| Algor | ithms and Da | ta Structi | ures | | | | | Abbr.
ADS | | | |-------|---|---|--|---|--|--|---|--------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 2.2 | 150 h | 5 | 2nd sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | | Forms of te | , and the second | | Language | | | | | type | | 0.0011/001 | _ | (forms of l | <u> </u> | group size | | | | | | Lecture | | 2 SCH/30 h | 45h | To be annou
in course | ınced | 60 | German | | | | | Practical / Ser | ninar | 2 SCH/30 h | 45h | iii codi sc | | 15 | German | | | | 2 | Learning out | comes / | competence | es | | | | | | | | 3 | of algo They k optimi Studen use th They k variou progra They k examp Studen impler | orithms. know proces sation proces sation proces sation proces em for mo know the a s search a mming. know differ bles. Ints know s ment an ap know abou | edures for all blems and castandard data adelling and increas of applied and sorting materials are the methods come graph appropriate pr | gorithm devel
an apply them
a structures, a
in software de
ication and the
nethods and ca
s of hashing, ca
algorithms and
rocedure in ea
exity classes P | opment and to example is well as servelopment. e advantage an use them can evaluate d application ch case. | strategies s. veral types s and disac purposefu them and s of them. | for solving of trees, and dvantages of lly in apply them t They can sel | d can | | | | | Algorit patter Algorit dynam Data s Trees: Search Insert Hashir Graph | thm develons thms for so ic prograr structures: for example methods ionSort, Bung algorithm | olving optiming, back
Sequence, I
ple binary tro
and sorting
ubbleSort, Q | stepwise refir
isation probler
tracking, divid
inked list, states, AVL trees
methods: for
uickSort, Mergirst search, de | ms, optimal a
de-and-conquek, queue, sl
a, 2-3-4 trees
example Hea
geSort | and non-opuer, Greed
kip list
s, red-blac
apSort, Se | otimal method
y method
k trees
lectionSort, | | | | | 4 | Participation
None | requiren | nents | | | | | | | | | 5 | Form of asse | | | | | 000= | | | | | | | Performance examination or written examination or term paper or OSPE | | | | | | | | | | | 6 | Condition for the award of credit points Module examination pass | | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | | 8 | Module coordinator | | | | | | | | | | | | DiplInf. B.C | | | | | | | | | | | 9 | Other inform | ation | | | | | | | | | | | | | | | | | | A I- I | | |-------|---|---|--|--|---|--|--------------------------|--------------|--| | Opera | ting Systems | 5 | | | | | | Abbr.
BES | | | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | | points | semester | | | | | | | | 4.1 | 150 h | 5 | 4th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | 1 | Course | | Contact | Self- | Forms of te | eaching | Planned | Language | | | | type | | hours | study | (forms of le | earning) | group size | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | 60 | German | | | | Practical / Ser | minar | 2 SCH/30 h | 45 h | iii codi sc | | 15 | German | | | | Learning out | | • | | | | | | | | | Operating systems manage the resources of a computer system and thus essentially determine its performance and usability. Good knowledge of operating system concept therefore essential for understanding modern IT systems. Students will have the follow skills after completing the course: - know, understand and recognise system-related abstractions as used and provided by operating systems - safely apply important procedures and algorithms from the field of operating systems -
know and understand methods used in the design of operating systems - be able to explain both in detail using example systems (primarily UNIX/Linux, partly Windows and other current operating systems) - Students can create hardware-related software (e.g. Linux kernel drivers) in a team and draft an argument/strategy to justify design decisions. | | | | | | | | | | 3 | Contents | ii aiiu ui a | irt arrangume | int/strategy to | Justily desig | gii decision | 3. | | | | | Syster Tasks brief predic Concu Synch Memo replac Input/ File sy Driver Securi syster Chang scripti | types are | nd structures on of current opplicable rocess manage and community of the gorithms character and xamples, struent programmentication, properts of the proport of a | al memory, so
block-oriente
ucture, fault to | ystems chitectures (publing egmentation d devices olerance anisms, auth | , paging, paging, page norisation, topics (e.g | age
trusted
. Bash | | | | | Participation
Formally: -, C | | | ım modulo 2 3 | ! System Dro | arammina | (SD) | | | | 5 | Form of asse | ssment | | | Jysieiii F10 | y arriffing | (JF) | | | | | Performance 6 Condition for | | | | | | | | | | | Module exami | | | Politis | | | | | | | | Application of Computer Scientification | | | following stud | dy programm | nes): | | | | | | Module coord | | offmann | | | | | | | | 9 | Prof. DrIng. Martin Hoffmann Other information Literature: — Tanenbaum: "Modern Operating Systems", Pearson Studium, 2016 — Stallings: "Operating Systems: Internals and Design Principles", Prentice Hall, 2011 | | | | | | | | | | Digita | Il Image Prod | essing a | nd Pattern | Matching | | | | Abbr.
BVM | | | |--------|---|--|---|--|--|--|---|----------------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 4.2 | 150 h | 5 | 4th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | | Course
type | | Contact tim | study | Forms of teaching (learning methods) | | Planned group size | Language | | | | | Lecture 2 SCH/30 h 45 h To be announced in 60 course | | | | | | | German | | | | | Practical | | 2 SCH/30 h | 45 h | | | 15 | German | | | | | Students know and understand the fundamental methods and procedures of image processing and pattern recognition. They are able to transfer them to typical problems and to develop and evaluation suitable solutions. As part of the practical, the students will additionally develop their own programmes independently within a specified deadline. They will prototype basic algorithms and evaluate them using sample data. In doing so, they will use specialist software libraries such as OpenCV. | | | | | | | | | | | | Contents Image proces for the analys Applications ir diagnostic sur spaces, image procedures, cl | is and into
nclude safo
port. The
e enhance | erpretation of
ety technology
following to
ment and filt | f individual im
gy, remote se
pics are exam
ering, segmer | nages and im
nsing, mecha
ples of possil | age sequer
inical engir
ole course | nces are used
neering or mo
contents: col | d.
edical
lour | | | | 4 | Participation None | require | ments | | | | | | | | | | Form of asse
Written exami
examination or
application or
(according to
Examinations | nation or
r scientifi
practical,
Section 1 | c poster or s
excursion or
4 (4) RPO) a | hort publication | on manuscrip
ol or portfolio | t or resear
or learning | ch funding
g diary or OS | | | | | 6 | Condition for the award of credit points Certificate of successful participation ("Testat") and passed module examination | | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | | 8 | Module coor
Prof. DrIng. | | lius | | | | | | | | | 9 | Other inform | | unced in the | | | | | | | | | | | | | - | | | | | | | | |------|--|---|---------------------|---|------------------|--------------|--------------|----------|--|--|--| | Comp | uter Granhics | | | | | | | Abbr. | | | | | СОПР | puter Graphics Workland Credit Study Frequency Som Duration Type | | | | | | CG | | | | | | No. | Workload | Credit | Study | Frequenc | / Sem. | Duration | Туре | Q level | | | | | | | points | semester | | | | | | | | | | 4.3 | 150 h | 5 | 4th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | | 1 | Course | | Contact | Self- | Forms of te | eaching | Planned | Language | | | | | | | | hours | | | | | | | | | | | type | | | study | (forms of l | _ | group size | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou | ınced | 60 | German | | | | | | Practical | | 2 SCH/30 h | 45 h | in course | | 15 | | | | | | | | / | L | | | | 113 | | | | | | 2 | Learning out | | - | | d algorithms | in computo | r graphics S | tudonto | | | | | | Students can apply the fundamental methods and algorithms in computer graphics.
are able to name basic terms and explain 2D as well as 3D computer graphics proce | | | | | | | | | | | | | can summaris | | | | | | | | | | | | | | se common tools from computer graphics and are familiar with the associated technologies. | | | | | | | | | | | 3 | Contents | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | Tools, application examples. • Concepts and basics: | | | | | | | | | | | | | Graphic input devices, screen technologies, 3D vision systems, raster graphics. | | | | | | | | | | | | | Object and view transformations: | | | | | | | | | | | | | Coordinate systems, transformations, projections, clipping. | | | | | | | | | | | | | J | | | | | | | | | | | | Polygonal representation, spatial division methods, scene description. • Rendering and visibility: | | | | | | | | | | | | | | | | aniques light | ing and shadi | ing local li | abtina | | | | | | | | | | | , global lightii | | | | | | | | | | ing pipeli | | .g :::::::::::::::::::::::::::::::::::: | , g.o.ag | | | | | | | | | | | ering tools: | | | | | | | | | | | Modell | ing and r | endering of a | a small scene | using e.g. Au | utodesk Ma | ya, Blender. | | | | | | 4 | Participation | require | ments | | | | | | | | | | | Formal: - | | | | | | | | | | | | | Content: Knov | vledge fro | om module 1. | .1 Mathemat | cs 1 (MA1) | | | | | | | | | Section 17 "Pr | ogress re | egulation" of | this BPO app | ies | | | | | | | | 5 | Form of asse | | | | | | | | | | | | | Performance e | xaminati | on or written | examination | | | | | | | | | 6 | Condition for | | | t points | | | | | | | | | _ | Module exami | | | | | | | | | | | | 7 | Application of Computer Sc | | | following stu | idy programn | nes): | | | | | | | | Module coord | | 30.) | | | | | | | | | | 8 | Prof. Dr. Kers | | r | | | | | | | | | | 9 | Other inform | | ' | | | | | | | | | | , | Literature | ation | | | | | | | | | | | | Bender M. | , Brill, M. | : | | | | | | | | | | | Computer Graphics, 2nd | | | | | | | | | | | | | edition, | · | | | | | | | | | | | | Hanser Ve | rlag, 200 | 5 <u>http://www</u> | <u>v.vislab.de</u> | | | | | | | | | | • Hearn D., | _ | | | | | | | | | | | | Computer | Graphics | with OpenGl | -1 | | | | | | | | | | Pearson Ir | nternation | nal Edition. | | | | | | | | | | | Foley J., van Dam A., Feiner S., Hughes J.: | | | | | | | | | | | | | | • | - Principles a | and Practice, | | | | | | | | | | Addison-W | /esley | | | | | | | | | | | Datab | oase Systems | ı | | | | | | Abbr.
DB1 | | | |-------|--|---------------|-------------------|----------------|----------------|-------------|-----------------|--------------|--|--| | No.
| Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 3.2 | 150 h | 5 | 3rd sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact | Self- | Forms of te | eaching | Planned | Language | | | | | | | hours | | | | | | | | | | type | | | study | (forms of le | earning) | group size | | | | | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou | ınced | 60 | German | | | | | L | | | | in course | | | | | | | 2 | Practical cours Learning out | | 2 SCH/30 h | 45 h | | | 15 | German | | | | | DBMSs in a targeted problem-solving manner and know the basic functions of the clients of several DBMSs and use them to communicate and program databases. They model complex issues securely in even extensive data models and implement them in various DBMS. In doing so, they make reasoned decisions for the applications of constraints, domains and data types. They apply SQL confidently to solve complex information needs and create extensive non-trivial queries. They use both the current SQL standard (currently SQL: 2016) and the dialects of several important DBMSs. They will understand the transaction concept, describe problems/phenomena of multi-user synchronisation and concurrency in read/write notation, and decide how to prevent them by isolating transactions - both through standard isolation levels and through specific implementations in multiple DBMSs. They access databases from their own programmes via database interfaces and process data records in programmes and databases. They programme Persistent Stored Modules in one of the DBMSs discussed. | | | | | | | | | | | 3 | Contents The following | tonics are | e examples o | f nossible cor | ntent: | | | | | | | | The following topics are examples of possible content: Tasks and architecture of database systems Clients and interfaces to database systems Basics of the relational model E/R modelling, logical and physical data models, SQL data types, implementation in important DBMSs Constraints, assertions, integrity, domains, data types SQL:2016, in particular SQL-schema statements, SQL-data statements, SQL-data change statements, SQL-transaction statements and SQL-connection statements Transaction concepts, concurrency, isolation level Database interfaces (JDBC, ODBC) Basics of Persistent Stored Modules, programming of PSM, triggers | | | | | | | | | | | 4 | Participation requirements | | | | | | | | | | | | Formal: - | - | | | | | | | | | | _ | Content: - | | | | | | | | | | | 5 | Form of asse | | am an e1 | o ma lm o t! | + a u u a u a | n nnns! + | | | | | | | Performance e excursion or d | | | | | r project w | ork or praction | cai, | | | | 6 | Condition for | | | | y OI OSFL | | | | | | | • | Practical cours | | | - | icipation ("Te | estat") | | | | | | | Module exami | | | | | / | | | | | | | | | | | | | | | | | **Please note:** The German version of this document is the legally binding version. The English translation provided here is for information purposes only. **Application of the module** (in the following study programmes): Computer Science (B.Sc.) | | Module catalogue for Computer Science (B.Sc.) | |---|---| | | of the Faculty of Minden Campus | | 8 | Module coordinator | | | Prof. Dr. Dominic Becking | | 9 | Other information | | | Kleuker, S., Grundkurs Datenbankentwicklung, 4th ed. Vieweg Teubner, 2016 Kemper, A, Eickler, A, Database Systems - An Introduction, 10th ed. De Gruyter, 2015 Elmasri, R. A., Navathe, B. N., Fundamentals of Database Systems, Hanser, 2009 Piepmeyer, L., Grundkurs Datenbanksysteme, Hanser, 2011 Saake, S., Sattler, KU., Heuer, A., Datenbanken - Konzepte und Sprachen, mitp, 2010 | | | Current literature on database systems | | Intro | duction to Co | mputer \$ | Science | | | | | Abbr.
EIN | | |-------|---|--|--|----------------------------------|--------------------|-------------|------------|--|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | 1.0 | 150 h | points
5 | semester
1st sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | 1.0 | Course | э | Contact | Self- | | f teaching | | | | | • | Course | | hours | Jen- | FOITIS O | i teacining | Fiarmed | Language | | | | type | | | study | (forms of learning | | group size | | | | | Lecture | | 2 SCH/30 h | 45 h | To be and | | 60 | German | | | | Exercise | | 2 SCH/30 h |
45 h | iii codi se | • | 30 | German | | | 2 | Learning outcomes / competences The roots and development history of computer science should be understood. Studen recognise the reciprocal effects of society on computer science and vice versa and lear a position on this themselves. A special aspect is dedicated to gender equality in comp science in research, teaching and development. The students should get to know diver profiles of computer scientists from different industries. The subject area should be unin its diversity and breadth and the conceptual sub-areas. The students should be enabled a targeted choice of subjects in their subsequent studies, taking into account the strengths and inclinations and with regard to their future intended professional field. Septional should be able to be encouraged in their choice of study and motivated for successful septions. | | | | | | | rn to take puter erse job nderstood abled to neir Students | | | 4 | Achieve Informe Gende Subfie Impore Job pre Informe Propose Forma Numb Algorities Artifice Interne | vements in atics and atics and atics and atics and atics of a contains atics at the | y in computer mputer science data protection protection gives a computer science de computer de computer science s | science
r science
ce
on | | | | | | | | None | • | | | | | | | | | 5 | Form of asse
Written exami | | | | | | | | | | 6 | Condition for the award of credit points Passed examination | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | 8 | Module coord
Prof. DrIng | | irens | | | | | | | | 9 | Other inform | | 11 (113 | | | | | | | | • | 0 1110111 | | | | | | | | | | Introd | duction to Programming with Scripting Languages | | | | | | | | | | | |--------|--|--|---|--|-------------|------------|------------|----------|--|--|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | | | | points | semester | | | | | | | | | | 1.3 | 150 h | 5 | 1st sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | | | 1 | Course | | Contact
hours | Self- | Forms of te | eaching | Planned | Language | | | | | | ype study (forms of learning) group size | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou | ınced | 60 | German | | | | | | Practical / Seminar 2 SCH/30 h 45 h 15 | | | | | | | German | | | | | 2 | Learning out | _earning outcomes / competences | | | | | | | | | | | | application applic | applications. They know structural elements of imperative programming languages and use them in their own programmes. They can apply language concepts of scripting languages in their own applications. They can analyse data in terms of its structure in simple examples and identify it as a JSON or XML document. They can create and process JSON or XML documents using a scripting language. | | | | | | | | | | | 3 | StructProperLanguStructStand | rties of so
lage conc
ture of JS
ard librar | ents of algor
cripting langu
epts of script
ON or XML do | ages, their ac
ing languages
ocuments
ssing JSON or | | d disadvan | tages | | | | | | | Participation
None | n require | ments | | | | | | | | | | 5 | Form of asse
Performance e | | on or written | examination | | | | | | | | | | Condition for the award of credit points Module examination pass | | | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | | | 8 | Module coordinator DiplInf. B.C. George | | | | | | | | | | | | 9 | Other inform | nation | | | | | | | | | | | Embe | dded System | s | | | | | | Abbr.
ES | | | |------|--|--|--|---|-----------------------------|-----------|------------|-------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 4.2 | 150 h | 5 | 4th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | Self- | Forms of te | eaching | Planned | Language | | | | | type | | | study | (forms of le | earning) | group size | | | | | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou in course | ınced | 60 | German | | | | | Practical / Ser | minar | 2 SCH/30 h | 45 h | | | 15 | German | | | | 2 | Learning outcomes / competences | | | | | | | | | | | | will gain an ur
to implement
specification a
system archite
Students are t | The students learn the basic knowledge for the implementation of embedded systems. They will gain an understanding of the specifics of embedded systems design and the skills needed to implement embedded systems. In particular, students are given the appropriate specification and programming techniques, models of sequence planning and software and ystem architectures for embedded systems as "tools of the trade". Students are taught the typical design steps for developing software for embedded systems using exemplary application scenarios. | | | | | | | | | | 3 | Contents | | | | | | | | | | | | Sp Fu Sc Mi In De Sp Re Va Pr | pecial feat
andament
oftware de
crocontro
teraction
esign step
pecification
eal-time of
ealisation
alidation a
actical im | evelopment to
oller programs
of software a
os
n and modell
operating syst
and implementation
plementation | uirements nics and hard oolchain for e ming and hardware ling languages tems entation | mbedded sys | tems | | S. | | | | | Participation | | | lation" of this | DDO amplica | | | | | | | | Formal: Secti
Content: Kno | wledge o | f technical co | mputer scien | ъго аррнеs.
ce and C++ r | orogrammi | ng | | | | | 5 | Form of asse
Performance e | ssment | | | ' | J | J | | | | | 6 | Condition for | r the awa | ard of credit | t points | | | | | | | | | Module examination pass | | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | | 8 | Module coordinator Prof. DrIng. Matthias König | | | | | | | | | | | 9 | Other inform
Literature will | | unced in the o |
course. | | | | | | | | Scient | tific Research | n and Wr | iting | | | | | Abbr.
FSI | | |--------|--|---------------|---------------------|-----------------|--------------------------|---------------|--------------------------|--------------|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | 6.1 | 150 h | 5 | 6th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | 1 | Course | | Contact
hours | Self- | Forms of teaching | | Planned | Language | | | | type study (forms of learning) group size | | | | | group size | | | | | | Tuition in
seminars | | 4 SCH/60 h | 90 h | To be annou
in course | 35 | German
and
English | | | | 2 | Learning outcomes / competences | | | | | | | | | | 3 | The ability to work independently in a scientific manner with the development of content as well as the comprehensible presentation of technical topics are indispensable for everyday professional life. Graduates of the module • are able to work independently on a specialist topic using specialist literature and other sources • can present and explain a subject in a comprehensible way • acquire communicative competence • deepen specialist informatics competences in the selected subject area of the seminar. Contents Self-organisation and independent work on a specialist topic • Knowledge management and literature study (research, dealing with citations and citing specialised literature) • Subject-specific writing for the written paper • Presentation technique and rhetoric for the presentation of the topic | | | | | | | | | | 4 | Participation | | | work of the se | iriiriai partic | iparits aria | super visitig i | cetarers | | | | None | | | | | | | | | | 5 | Form of asse | essment | | | | | | | | | | Oral examinat
diary or OSPE | | m paper or p | oroject work o | r field trip o | r daily log o | or portfolio or | · learning | | | 6 | Condition for | | | • | | | | | | | | Certificate of successful participation ("Testat") Module examination pass | | | | | | | | | | | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | 8 | Module coordinator Prof. Dr. Dominic Becking | | | | | | | | | | 9 | Other inform
Literature: Pu | | on the chose | en topic in Ger | rman and En | ıglish langu | age | | | | Busin | ess Administ | ration | | | | | | | Abbr.
BWL | | |-------|---|---------------|-------------------|-------|-------------|--------------------|----------|------------|--------------|--| | No. | Workload | Credit points | Study
semester | Fı | requency | Sem. Duration Type | | Туре | Q level | | | 4.5 | 150 h | 5 | 4th sem. | | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | 1 | Course Contact Self- Forms of teaching Planned hours | | | | | | Language | | | | | | type study (forms of learning) group size | | | | | | | | | | | | Lecture | | 2 SCH/30 h | (| 90 h | To be annou | nced in | 60 | German | | | | Exercise | | 2 SCH/30 h | | | course | | 30 | German | | | 2 | Learning out | comes / | competenc | es | | | | | | | | | computer scientist. They know essential business management procedures and basic terms, have an overview of legal forms of companies, investment and financing and production planning and control. They have an overview of marketing strategies. They have become familiar with the relationship between algorithms from computer science and problems from business administration using selected quantitative examples (e.g. location planning, determination of demand). | | | | | | | | | | | 3 | Contents Basic concepts of business administration Business strategies Decision theory Costs and controlling Investment and financing Production | | | | | | | | | | | | LogistMarkeHuma | ting | es and gende | er as | spects | | | | | | | | Participation
Section 17 "Pr | • | | this | s BPO appli | es. | | | | | | 5 | Form of asse
Term paper or | | vamination | or o | ıral oyamin | ation | | | | | | 6 | Condition for Module exami | the awa | ard of credit | | | ation | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | | 8 | Module coordinator Prof. Dr. DrIng. Matthias König, (covered by Prof. DrIng. Martin Hoffmann) | | | | | | | | | | | 9 | Other inform
Literature will | | inced in the o | cour | se. | | | | | | | IT Lav | w | | | | | | | Abbr.
ITR | | | |--------|--|---|-------------------|----------------|---------------|-------------|------------|--------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 2.4 | 150 h | 5 | 2nd sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | Self- | Forms of te | | Planned | Language | | | | | type | sype study (forms of learning) group size | | | | | | | | | | | Sem. lessons 4 SCH/60 h 90 h To be announced 35 in course | | | | | | | | | | | 2 | Learning outcomes / competences | | | | | | | | | | | | Students know the most important legal aspects they may come into contact with while working in the field of information technology. In particular, they can assess which rights and obligations arise in contracts regarding the manufacture, distribution and use of (software/hardware) products, which intellectual property rights are associated with which products, which property rights can be used to protect intellectual property, how data protection must be observed, as well as what consequences can be expected in the event of legal violations. | | | | | | | | | | | 3 | Contents | | | | | | | | | | | | The content re | _ | | | essentially c | oss-section | nal: | | | | | | | vil law an
oduct liab | d contract lav | W | | | | | | | | | | ata protec | | | | | | | | | | | | iminal lav | | | | | | | | | | | | | | emedia and ir | | | | | | | | | | | | (inter alia co | pyright, pate | nt, tradem | ark law) | | | | | | Participation
Section 17 "Pr | | | this BP∩ annl | ies | | | | | | | | Form of asse | | agaiation of | В О аррі | | | | _ | | | | _ | Term paper or | | examination of | or oral examir | nation | | | | | | | 6 | Condition for | | | • | | | | | | | | | Participation in seminar lessons with certificate of successful participation ("Testat"). Module examination pass | | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | | | Module coordinator Prof. DrIng. Matthias König | | | | | | | | | | | 9 | Other information | | | | | | | | | | | | Literature will | be annou | inced in the o | course. | | | | | | | | Mathe | ematics for Co | omputer | Scientists I | | | | | Abbr.
MA1 | | |-------|--|---------------|-------------------|----------------|--------------------------|----------|------------|--------------|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | 1.1 | 240 h | 8 | 1 sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | 1 | Course | | Contact
hours | Self- | Forms of te | | Planned | Language | | | | type | | | study | (forms of le | earning) | group size | | | | | Lecture, | | 4 SCH/60 h | 90 h | To be annou
in course | ınced | 60 | German | | | | exercise | | 2 SCH/30 h | 60 h | | | 20 | | | | | propositional logic. They can select suitable evidence procedures. Vector and matrix calculations as well as functions can be used by the students and the solving of linear equation systems can be applied to examples. Students have understood and can apply differential and integral calculus. Contents | | | | | | | | | | | Contents Basics Number ranges Set theory Propositional logic Full induction Linear algebra Vectors and
vector spaces Matrices and linear mappings Linear systems of equations Analysis I Sequences and series Real functions of one variable Differential calculus Integral calculus | | | | | | | | | | | Participation None | require | ments | | | | | | | | 5 | Form of asse
Written exami | | th preliminar | y examinatior | 1 | | | | | | | Condition for
Passed exami | | ard of credit | t points | | | | | | | 7 | Application o Computer So | | | following stud | dy programm | nes): | | | | | | Module coordinator Prof. Dr. Kerstin Müller (covered by DiplInf. Birgit Christina George, Prof. Dr. Christoph Thiel, Dr. Jan Thies) | | | | | | | | | | 9 | | | | | | | | | | | Mathe | ematics for Co | omputer | Scientists I | I | | | | Abbr.
MA2 | | | |-------|--|---------------|-------------------|----------------|--------------------------|------------|----------------|--------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 2.0 | 240 h | 8 | 2nd sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | | Forms of te | | Planned | Language | | | | | type | | | study | (forms of learning) | | group size | | | | | | Lecture | | 4 SCH/60 h | 90 h | To be annou
in course | ınced | 60 | German | | | | | Exercise | | 2 SCH/30 h | 60 h | 004. 30 | | 20 | | | | | 2 | Learning out | comes / | competenc | es | | | | | | | | | calculus. They know linear differential equations and relevant connections from the field of numerics. Elementary numerical procedures can be transferred to other situations. Students are able to select suitable methods for solving elementary stochastic problems. They understand basic concepts of probability theory, important distributions and their significance as well as basic statistical methods. Contents | | | | | | | | | | | | Contents Analysis II Local and global approximation Differential equations Real-valued functions with several variables Differential calculus for functions of several variables Mumerics Error and error propagation Elementary numerical methods Probability calculation and statistics Combinatorics Probability calculation Random variables Distributions Statistics | | | | | | | | | | | 4 | Participation | require | ments | | | | | | | | | | Formal: -
Content: Knov | wledge fro | om Module 1. | 1 Mathematic | s 1 (MA1) | | | | | | | 5 | Form of asse
Written exam | | th preliminar | y examinatior | 1 | | | | | | | 6 | Condition for
Passed exami | nation | | - | | | | | | | | 7 | Application of Computer So | | | following stud | dy programm | nes): | | | | | | 8 | Module coord
Prof. Dr. Ker
Thiel, Dr. Jar | stin Mülle | r (covered by | / DiplInf. Bir | git Christina | George, Pr | rof. Dr. Chris | toph | | | | 9 | Other information Literature Hartmann, Peter: Mathematik für Informatiker, Vieweg. Bronstein, Semendyajev: Taschenbuch der Mathematik | | | | | | | | | | | Objec | t-Oriented Pr | ogramm | ning | | | | | Abbr. | | | | |-------|---|---|--|--|-----------------------|----------|------------|------------------|--|--|--| | No. | Workload | Credit points | Study semester | Frequency | Sem. | Duration | Туре | Q level | | | | | 1.2 | 210 h | 7 | 1st sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | | | 1 | Course | | Contact
hours | Self- | Forms of te | eaching | Planned | Language | | | | | | type | | liouis | study | (forms of le | earning) | group size | | | | | | | Lecture Practical / Ser | minar | 2 SCH/30 h
2 SCH/30 h | 75 h
75 h | To be annou in course | <u> </u> | 60
15 | German
German | | | | | 2 | Learning out | comes / | competend | es | | | | | | | | | | The students know concepts of object orientation and can use them to develop their own software applications. The students know the Java programming language and can use it to develop their own software. They know elements for documentation and apply them in their own programmes. They can identify and create object-oriented solutions for simple problems. The students know programming tools and can use them practically. They know methods for exception handling and apply them. Students learn to use standard libraries in their own implementations in a targeted manner. | | | | | | | | | | | | 3 | Contents | | | | | | | | | | | | | Introd Use of Data t Introd Introd Introd Introd Appro | uction of
f a develor
types and
luction to
luction of
luction to
aches to | coment environment | of class and o
conment and a
ctures
polymorphism
andling | debugger | | | | | | | | | Participation
None | require | ments | | | | | | | | | | | Form of asse
Performance e | | on or written | examination | | | | | | | | | | Condition for the award of credit points Module examination pass | | | | | | | | | | | | 7 | Application of Computer Scientific Scientific Computer | | | following stud | dy programn | nes): | | | | | | | | Module coord | | nn | | | | | | | | | | 9 | | Prof. Dr. Jörg Brunsmann Other information | | | | | | | | | | | - rogra | amming Metl | nods and | Techniques | 5 | | | | Abbr.
PM | | | | |---------
---|---------------|--|------------------|-------------------|------------|---------------|-------------|--|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | | 2.1 | 210 h | 7 | 2nd sem. | Annual | Summer | 1 Sem. | Compulsory | B.Sc. | | | | | 1 | Course | • | Contact | Self- | Forms of | teaching | Planned | Language | | | | | | | | hours | | | Ţ. | | | | | | | | type | | | study | (forms of | learning) | group size | | | | | | | Lecture | | 2 SCH / 30 h | 45 h | To be anno course | ounced in | 60 | German | | | | | | Practical cours | se | 3 SCH / 45 h
(of which 1
SCH are tuto
supervised) | | | | 15 | German | | | | | 2 | Learning out | comes / | competenc | es | | | | | | | | | | student will be able to select and use key standard architectural patterns appropriate to the task. Students are able to develop more complex applications and their own libraries. Students master basic techniques and workflows for source code version management and are able to actively apply them in projects. The students recognise "bad smells" and are able to eliminate them with the help of refactoring through safeguarding by means of self-formulated unit tests. | | | | | | | | | | | | | actively apply them in projects. The students recognise "bad smells" and are able to eliminate | | | | | | | | | | | | | | Java and I | tware libraria | c (ADIc) for a | ampla Apa | Chaili | nacho DOL II | rooChart | | | | | 4 | - (Participation None | Jse of sof | | s (APIs): for ex | kample Apa | che CLI, A | pache POI, Ji | reeChart | | | | #### Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus Condition for the award of credit points 6 Certificate of successful participation ("Testat") and passed module examination 7 Application of the module (in the following study programmes): Computer Science (B.Sc.) Module coordinator 8 Prof. Dr.-Ing. Carsten Gips 9 Other information Deitel, Deitel: "Java - How to Program", Pearson Education Limited, 2012 Bloch, J.: "Effective Java: A Programming Language Guide", Addison-Wesley, 2011 Urma, Fusco, Mycroft: "Java 8 in Action", Manning Publications, 2014 Chacon, Straub: "Pro Git", Apress, 2014 Robert Martin: "Clean Code", Prentice Hall, 2008 Martin Fowler et al.: "Refactoring", Addison Wesley, 1999 Roy Osherove: "The Art of Unit Testing", Manning, 2013 Kent Beck: "Test Driven Development", Addison-Wesley, 2002 Gamma et al.: "Design Patterns", Addison-Wesley, 2011 Ullenboom, C.: "Java ist auch eine Insel", Rheinwerk-Verlag, 2016 | Softwa | are Engineer | ing | | | | | | Abbr.
SE | | | |------------------|--|--|---|---|---|------------|------------|-------------|--|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | | | points | semester | | | | | | | | | 3.0 | 210 h | 7 | 3rd sem. | Annual | Winter | | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | Self- | | | | Language | | | | | type | | | study | (forms of le | earning) | group size | | | | | | Lecture | | 2 SCH/30 h | 75 h | To be annou | uncod | 60 | German | | | | | Practical / Ser | ninar | | 75 h | in course | iriced | | German | | | | | Learning out | | 2 SCH/30 h | | | | 15 | German | | | | 3 | They will learn about relevant phases from requirements analysis to high-level design, low-level design, implementation and quality assurance. They will learn in detail the notation elements and diagram types of the UML standard and apply them to a software project. Students learn about architecture and design patterns as well as JUnit tests Contents | | | | | | | | | | | | Contents Introduction to Software Engineering UML diagrams (e.g. modelling of business processes with activity diagrams) Process models (waterfall model, agile process models such as Scrum and Extreme Programming) Requirements analysis (stakeholders, objectives, use cases, derivation of functional requirements, non-functional requirements, requirements and specifications) High-level design (system architecture, derivation of basic classes, methods, sequence diagram, interface development considerations) Programme generation (translation of classes and associations, types of object membership, software architecture) Low-level design (details in miniature, model view controller, GoF pattern) Implementations (Distributed Systems, Libraries, Components, Frameworks, Persistent Data Management) SW quality assurance (assurances, unit tests, test procedures, metrics) | | | | | | | | | | | | Persis | tent Data | Managemen | t) | braries, Com | | | | | | | | Persis SW qu Participation Formally: -, C (PM) | tent Data
uality assu
r equire
ontent: K | Managemen
urance (assur
ments | t)
ances, unit te | braries, Com | cedures, m | etrics) | g methods | | | | 5 | Persis SW que Participation Formally: -, C | tent Data
pality assumed require
content: K | Managemen
urance (assur
ments
nowledge of | t)
ances, unit te
object-oriente | braries, Com | cedures, m | etrics) | g methods | | | | 5 | Persis SW que Participation Formally: -, C (PM) Form of asse Performance of Condition for | tent Data uality assu require ontent: K essment examinati r the awa | Managemen urance (assurements nowledge of on or written ard of credit | t) ances, unit te object-oriente examination | braries, Com | cedures, m | etrics) | ng methods | | | | 5
6
7 | Persis SW que Participation Formally: -, C (PM) Form of asses Performance of Condition for Module exami Application of | tent Data pality assu require content: K essment examinati r the awa nation pa of the mo | Managemenurance (assurments) nowledge of on or written ard of credit ss odule (in the | t) ances, unit te object-oriente examination points | braries, Com
ests, test pro
ed programm | cedures, m | etrics) | g methods | | | | 5
6
7 | Persis SW que Participation Formally: -, C (PM) Form of asse Performance of Condition for Module exami Application of Computer Science | tent Data pality assured require content: K essment examination the awa mation pa of the moence (B.S | Managemenurance (assurments) nowledge of on or written ard of credit ss odule (in the | t) ances, unit te object-oriente examination points | braries, Com
ests, test pro
ed programm | cedures, m | etrics) | g methods | | | | 5
6
7
8 | Persis SW que Participation Formally: -, C (PM) Form of asses Performance of Condition for Module exami Application of | tent Data pality assure require content: K essment examination the awa nation pa of the mo ence (B.S dinator | Managemenurance (assurments nowledge of on or written ard of credits sodule (in the c.) | t) ances, unit te object-oriente examination points | braries, Com
ests, test pro
ed programm | cedures, m | etrics) | g methods | | | | Softw | are Project | | | | | | | Abbr.
SWP | | | |-------|--|----------------------|-------------------|--|---------------------------|------------|--------------|--------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 4.0 | 150 h | 5 | 4th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | Self- | Forms of to | eaching | Planned | Language | | | | | type | | | study | study (forms of learning | | group size | | | | | | Practical / Ser | ninar | 4 SCH/60 h | 90 h | To be announced in course | | 15 | German | | | | 2 | Learning outcomes / competences | | | | | | | | | | | | project
management. They plan a major software project, implement it, manage it and regularly document and present project progress and results. They make a well-founded decision on a process model in the given project context. They apply the approach, organisational forms and methods of a recognised formal project management system to their project. They realise a project in a larger project group (approx. 8 people) with role allocation. | | | | | | | | | | | 3 | Contents • Establishment and implementation of a project | | | | | | | | | | | | • Dr | awing up | a specification | on sheet base
t an effort esti | d on the spe | | | | | | | | • Es | tablish a
anageme | nt | and procedure | | | nd risk | | | | | | pr | ocedures | , coordination | eam (version i
n processes, ir
and interim res | iterfaces) | t, build | | | | | | | • Us | | ent technolog | gies to implem | | ication | | | | | | | Participation | require | ments | | | | | | | | | | Formal: -
Content: Kno
Section 17 "Pr | | | | | P) | | | | | | 5 | Form of asse
Project work | | | е д. с арр. | | | | | | | | 6 | Condition for
Module exami | | | t points | | | | | | | | | Application o Computer Sc | of the mo | odule (in the | following stud | dy programn | nes): | | | | | | | Module coord
Lecturers in the
Gips, Hoffman | ne compu | | | | , Behrens, | Brunsmann, (| George, | | | | | Other inform | | | , | 1 | | | | | | | Softw | are Project M | lanagem | ent | | | | | Abbr.
SPM | | | |-------|--|---------------|-------------------|------------------------------|---------------------|--------------|--------------|--------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 3.4 | 150 h | 5 | 3rd sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | | 1 | Course | | Contact
hours | Self- | Forms of te | | Planned | Language | | | | | type | | | study | (forms of learning) | | group size | | | | | | Seminar lessons | | 4 SCH/60 h | 90 h | To be annou | ınced | 35 | German | | | | | | | | | in course | | | | | | | 2 | Learning outcomes / competences | | | | | | | | | | | | Students apply the essential basics of project management confidently to exemplary projects. They are able to plan, implement and manage parts of projects as well as document and present project progress and results. They can make a well-founded decision in favour of a process model in a project context. They know the procedure, organisational forms and methods of a recognised formal project management system. | | | | | | | | | | | 3 | Contents | | | | | | | | | | | | Projects as problem-solving processes Foundation, organisation and structuring of projects Project planning Project management Software project management Tools in project management Communication and documentation as a cross-sectional task Quality assurance Project management systems | | | | | | | | | | | 4 | Participation | | - | | | | | | | | | | None | | | | | | | | | | | 5 | Form of asse
Oral examinat
learning diary | ion or ter | | | r practical, e | excursion or | daily log or | portfolio or | | | | 6 | Condition for | | | | | | | | | | | | Certificate of s
Module exami | | | n ("Testat") | | | | | | | | 7 | Application of Computer Science | | | following stud | dy programn | nes): | | | | | | 8 | Module coordinator Prof. Dr. Dominic Becking | | | | | | | | | | | 9 | Other inform | ation | | | | | | | | | | | | | | rojects with P
Management | | | | | | | | System Programming | | | | | | | | | | | |--------------------|------------------|--------|------------------|-----------|----------------------|-----------|-----------------------|----------|--|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Type | Q level | | | | | | points | semester | | | | | | | | | 3.3 | 240 h | 8 | 3rd sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | | 1 | | | Contact
hours | | Forms of (forms of | | Planned
group size | Language | | | | | | | 3 SCH/ 45 h | | To be anno
course | ounced in | 60 | German | | | | | Practical course | | 3 SCH/ 45 h | 100 h | 2 2 3 3 4 3 | | 15 | German | | | #### 2 Learning outcomes / competences Students acquire comprehensive competences for the development of system-related software in the current system programming languages C and C++, taking into account common standards (e.g. ANSI-C/C11 and C++14/C++17). They are proficient in current tools in this environment, for example the Gnu compilers (gcc, g++) including debugger (gdb) and Make, and know various current standard libraries. Program development using essential parts of the UNIX/Linux programming interface (POSIX) is mastered. Students can apply this knowledge independently to more complex tasks (practical tasks). #### 3 Contents - Basics C/C++ - Types, expressions, operators, control flow - Structures and enumerations, typedef - Bit operations - Functions, declaration vs. definition, prototypes, call-by-value - Visibilities and scopes, global vs. local variables, static vs. external, cross-file - Storage classes - References in C++ - Overloading operators and functions in C++ - Use of a debugger, e.g. gdb - Unit test in C++, e.g. with cppunit or googletest - Object-oriented programming in C++ - Classes, Constructors, Destructors, Copy Constructor, Assignment Operator - Friends - Operators - Separation of interface and implementation - Inheritance, polymorphism, virtual, slicing, abstract classes, multiple inheritance - Modular programming - Dividing code into header and implementation files - One Definition Rule - Preprocessor: Include, macros, conditional translation, constants - Static and dynamic libraries, linkers - Makefiles - Memory management - Memory management under Linux, virtual memory, stack vs. heap - Pointers and addresses, declaration, dereferencing, assignment - Dynamic memory management with malloc/free and new/delete - Problems with memory management: Memory Leaks, Stale Pointer, Double Delete - Call-by-Reference in C using Pointers - Connection between pointers and arrays, multidimensional arrays, CMD parameters - Address arithmetic - C strings and functions from the C-Std-Lib (e.g. strcpy, strcat, strtok) - Function pointer - SmartPointer in C++ - Reading complex declarations - Input and output, handling directories - System functions under Linux, file abstraction, standard I/O channels - Handling files under C, scanf/printf #### Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus Streams in C++, error states, manipulation Error handling Signalling of errors in the Linux system interface (return value, errno), abort/exit/atexit Dealing with exceptions (C++)Assertions Standards: ANSI C vs. C11, C++11 vs. C++14 vs. C++17 Metaprogramming with templates (functions, classes) Introduction to standard libraries (e.g. STL, Boost) C++14: Move semantics, SmartPointer Process and thread manipulation (create, terminate, states, zombies/orphans) Inter-process communication: Signals and sockets, overview of other IPC forms Time (calendar, time, timing and timer) Embedding/integration of other languages (e.g. Python, Lua) Use of libraries, e.g. SQLite3, libXML2, libCurl System-oriented programming under Linux on the Raspberry Pi (C/C++) Documentation with Doxygen Safe and defensive programming Changing contents of the practicals on current topics 4 Participation requirements None 5 Form of assessment Performance examination or written examination or term paper or OSPE Condition for the award of credit points 6 Certificate of successful participation ("Testat") and passed module examination 7 **Application of the module** (in the following study programmes): Computer Science (B.Sc.) 8 Module coordinator Prof. Dr.-Ing. Carsten Gips 9 Other information Breymann, U.: "Der C++ Programmierer", Hanser, 2011. Scott Meyers: "Effective Modern C++", O'Reilly, 2014 Klemens, B.: "21st Century C", O'Reilly, 2014 Brian Kernighan, Dennis Ritchie: "The C Programming Language", Prentice Hall, 2000 Love, O.: "Linux System Programming", O'Reilly Media, 2013 Kerrisk, M.: "The Linux Programming Interface", no starch press, 2011 | Techn | ical English | | | | | | | Abbr.
TE | | | |-------|---|---------------|-------------------|----------------|------------------------------|--------------|-----------------------|-------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 5.0 | 150 h | 5 | 5th sem. | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | | | Course
type | | Contact
hours | Self-
study | Forms of te | | Planned
group size | Language | | | | | Sem. lessons | | 4 SCH/60 h | 90 h | To be announced 35 in course | | | English | | | | | Participants should be able to express themselves using technical English. They should be able to use these acquired language skills in an international environment, both written and spoken. Students will learn the
specific terminology used in the field of computer science as well as general technical English and will be able to describe and explain processes, solve technical problems, and use technical terminology to discuss and communicate IT solutions. | | | | | | | | | | | 3 | Contents Computer Hardware: Input and output media, printer, storage media Essential and creative software: Operating system, word processing, spreadsheets and databases, desktop publishing, multimedia Programming: Programming languages, Java, web design Technologies of the future: Communication systems, networks, video games Internet: E-mail, the web, videoconferencing Employment opportunities in the ICT sector | | | | | | | | | | | 4 | Participation
Section 17 "Pr | require | ments | | | | | | | | | 5 | Form of asse
Written exami | | | | | | | | | | | | Condition for
Participation in
Passed writter | n seminar | lessons with | - | successful p | articipatior | n ("Testat") | | | | | 7 | Application o Computer Sc | | | following stud | dy programm | nes): | | | | | | | Module coordinator Prof. DrIng. Martin Hoffmann | | | | | | | | | | | 9 | Other inform | nation | | | | | | | | | | Comp | uter Enginee | ering | | | | | | | Abbr.
TI | | |------|---|---|---|---|--|--|-------------|--------------------|-----------------------------|--| | No. | Workload | Credit points | Study
semester | | requency | Sem. | Duration | Туре | Q level | | | 1.4 | 150 h | 5 | 1st sem. | | Annual | Winter | 1 sem. | Compulsory | B.Sc. | | | 1 | Course type | | Contact
hours | | Self-
study | Forms of teaching (forms of learning) | | Planned group size | Language | | | | Lecture | | 2 SCH/30 h | | 90 h | To be announced in course | | 60 (L) | German | | | | Exercise | | 2 SCH/30 h | | | | | 30 (E) | German | | | 2 | Learning outcomes / competences After completing the course, students can calculate simple DC circuits in electrical engineering using Ohm's law and Kirchhoff's laws; assign characteristics and areas of application of different types of processors; describe the basic structure and functional units of a processor and describe their functions; name basic processor architectures, list their characteristics or advantages and disadvantages, identify existing architectures (in block diagram); name the most important command and addressing types, understand commands using the data sheet and convert them into assembler/machine code; present the principles of error detection and error correction, derive the structure and properties of a Hamming code and use it as an example; compare storage technologies and name their examples of use; apply the rules of Boolean algebra; create digital circuit diagrams from functional equations and vice versa; read normal form from truth tables and minimise using KV diagrams; describe the basic structure of bistable circuits, distinguish their classifications from each other; name the properties and examples of use of RS, D, JK and T flip-flops | | | | | | | | s;
their
nd
s from | | | 3 | Fundamentals | s Law hoff's Law s of comp ture of pr tectures, duction to am and d detection ls of digit an algebr | vs
outer archited
ocessors with
control/comp
o hardware-re
ata storage valued and correcti | tur
h po
oution
elat
with
ion
/
rm | es
rocessor ty
ng unit and
ed program
n storage of
in data trai | registers,
nming
rganisation,
nsmission | storage ted | chnologies | | | | 4 | Participation | | <u> </u> | | | | | | | | | | None | | | | | | | | | | | 5 | Form of assessment Written examination | | | | | | | | | | | 6 | Condition for the award of credit points | | | | | | | | | | | _ | Passed examination Application of the module (in the following study programmes): | | | | | | | | | | | 7 | Application Computer Sci | | | e fo | ollowing stu | ay programr | nes): | | | | | 8 | Module coor
Angela Kreie | dinator | | | | | | | | | # 9 Other information Literature (e.g.): • Elektrotechnik Grundlagen, Steffen, Bausch • Digitaltechnik - Ein Lehr- und Übungsbuch, Woitowitz, Urbanski • Mikrocontroller und Mikroprozessoren, Brinkschulte, Ungerer • Logischer Entwurf digitaler Systeme, Liebig • Mathematik sehen und verstehen, Haftendorn | Theor | etical Compu | ıter Scieı | nce | | | | | Abbr.
THI | | |-------|---|--|---|--------------|-----------------------|----------|------------|--------------|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | 2.3 | 150 h | 5 | 2nd sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | | 1 | Course | | Contact
hours | Self- | Forms of te | _ | Planned | Language | | | | type | | | study | (forms of le | earning) | group size | | | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou in course | nced | 60 | German | | | | Exercise | | 2 SCH/30 h | 45 h | | | 30 | German | | | | Learning outcomes / competences Students can develop automata and grammars give the corresponding language classes to given finite automata, pushdown automata, different types of grammars and Turing machines and vice versa understand the Chomsky hierarchy and assign it to the classes of languages and automata explain and discuss problems of computability, decidability and the halting problem discuss the P-NP problem with the help of examples | | | | | | | | | | 3 | Regula Gramma Pushd Conte Chome Calcul | ar terms
mars, con
own auto
xt-sensiti
sky hierai
ability, de | itext-free land
maton
ve and type (
rchy | Ianguages, I | Furing machii | ne | | | | | 4 | Participation
None | require | ments | | | | | | | | 5 | Form of asse
Written exam | | | | | | | | | | 6 | Condition for the award of credit points Passed examination | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | 8 | Module coord
DiplInf. BC | | | | | | | | | | 9 | Other inform | nation | | | | | | | | | Usabi | lity and Data | ı Visualiz | ation | | | | | Abbr.
UDV | |-------|--|---------------------------------------|-------------------|---|------------------------------|---------------------------|--------------------|--------------| | No. | Workload | Credit points | Study
semester | Frequenc | Sem. | Duration | Туре | Q level | | 6.0 | 150 h | 5 | 6th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | 1 | Course
type | | Contact
hours | Self-
study | Forms of t | | Planned group size | Langua
ge | | | Sem. lessons | | 4 SCH/60 h | 90 h | To be anno in course | To be announced in course | | German | | | After completing the course, students can describe the possibilities of perception and the processing of information in humans; name
and describe common techniques for entering and presenting information; present various interaction models and apply them by example; explain different principles and techniques of data visualisation; describe and compare individual usability concepts and principles; describe, compare and apply different methods for usability efficiency measurement; describe and compare essential methods of the design process; name relevant methods of evaluation, explain their characteristics and apply them by way of example | | | | | | | | | 3 | enviro Desig Mode | onment (I
In principl
Is and me | HCI-Human C | computer In
iques for vis
pility engine | teraction)
sualising data | interaction | of humans in | their | | 4 | Participation None | n require | ements | | | | | | | 5 | Form of asso | | nd/or term pa | aper | | | | | | 6 | Condition for Participation Passed written | in semina | r lessons witl | • | of successful | participatio | n ("Testat") | | | 7 | Application
Computer So | | | e following s | tudy program | mes): | | | | 8 | Module coordinator Prof. Dr. Kerstin Müller | | | | | | | | | 9 | Other information Literature (e.g.): The Laws of Simplicity, J. Maeda Human-Computer Interaction, A. Dix, J. Finlay, G. Abowd, R. Beale Human-Centered Visualization Environments, A. Kerren, A. Ebert, J. Meyer Interaction Design, H. Sharp, Y. Rogers, J. Preece | | | | | | | | | Web-E | Based Applica | ations | | | | | | Abbr.
WBA | |-------|---|---|---|---|---------------------|--------------------------|---------------|------------------| | No. | Workload | Credit points | Study semester | Frequency | Sem. | Duration | Туре | Q level | | 4.4 | 150 h | 5 | 4th sem. | Annual | Summer | 1 sem. | Compulsory | B.Sc. | | 1 | Course | | Contact | Self- | Forms o | f teaching | planned | Language | | | type | | hours | study | (forms of | | Group size | | | | Lecture Practical course | | 2 SCH/30 h
2 SCH/30 h | 45 h
45 h | To be and in course | | 60
15 | German
German | | | Learning out | | | | | | 13 | Ociman | | | They will get t
use them appi | to know the
ropriately
or profess | he basic tech
for the prob
ional web de | evaluate these pr
nologies standar
lem. They will ge
velopment and u
systems. | dised by total | he W3C an
view of cur | rent open soi | urce | | | Introduction, classification of web applications, architectures Basics (HTTP, session management, standardisation, W3C) Designing websites (cascading stylesheets, HTML5) Client-side technologies: JavaScript, Ajax, DOM, current libraries and frameworks Server-side multi-layer architectures, frameworks for their implementation: e.g. JSF, Application server (tasks, services, examples): e.g. Glassfish Web services e.g. REST Data exchange formats e.g. JSON | | | | | | | | | | Formal participation requirements: - Content: Knowledge of programming in Java, software engineering, introduction to programming with scripting languages, databases | | | | | | | | | 5 | Form of asse
Performance e | | on or written | examination | | | | | | 6 | Condition for
Module exam | | | t points | | | | | | 7 | Application o Computer Sc | | | following study | programm | nes): | | | | 8 | | | nrens | | | | | | | 9 | Module coordinator Prof. DrIng. Grit Behrens Other information Literature: Kurz, Marinschek: "JavaSever Faces 2.2: Grundlagen und erweiterte Konzepte", dpunkt 2013 Schießer, Schmollinger "Workshop in JavaEE: Ein praktischer Einstieg in die Java Enterprise Edition mit dem Web Profile", dpunkt 2014 Dean Cemron "HTML5, JavaScript und jQuery", dpunkt 2015 Somin Timms "Mastering JavaScript Design Patterns", Packt Publishing 2016 | | | | | | | | | _ | pulsory Elective Module from List 1 "Methods in Computer Science"
base Systems II: Architectures and Implementation Techniques | | | | | | | | | |------|--|--|---|--|--|--|--|---------------------------------|--| | No. | Workload | Credit points | Study
semester | Frequency | | Duration | Туре | Q level | | | 5.10 | 150 h | 5 | 5th/6th
sem. | according | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | | 1 | Course | | Contact
hours | Self- | Forms of teaching Plan | | Planned | Language | | | | type | | | study | (forms of I | earning) | group size | | | | | Lecture | | 2 SCH/30 h | 45 h | To be announced in course | | 60 | German | | | | Practical cours | se | 2 SCH/30 h | 45 h | | 15 | | German | | | 3 | Manage Buffer File or Specia Basic Advan Reque Transa Recov Moder | roblems in abase tectsions for allysing an allyse the original topics are ecture of ging the bar manager ganisation all index standard solution material and cartion matery and cartin databases | n database sy hniques and of the application of implement performance enthis. They can be exampled of database systems for database structures as for database sation of dels inagement lata backup se paradigm | ystems using derive solution of these tecting the required of databases an formulate crease perform f possible constems hemory | their acquire
n approaches
chniques. Th
rements of tl
and, by takin
advanced SC
nance (SQL t | d theoretics from theo ey can instee applicating approprious and app | al knowledge
ory. They mal
all and admir
ion software.
ate technical | in
ke
nister
They will | | | | Participation
Formal: - | | | | | | | | | | | Content: Cont | | lodule 3.2 "Da | atabase Syste | ems I" (DB1) | | | | | | - | Form of asse
Oral examinat
portfolio or lea | ion or ter | | oroject work o | r practical, e | xcursion or | daily log or | | | | | Condition for Practical with | r the aw a | ard of credite of successfu | - | າ ("Testat") | | | | | | _ | Passed module examination Application of the module (in the following study programmes): | | | | | | | | | | 7 | Computer Sc | | | ionormig ord | 31 3 | , | | | | | 8 | Computer Sc
Module coord
Prof. Dr. Dom | ience (B. dinator | Sc.) | Tellerining etc | J 1 | · | | | | #### Literature: - Saake, G., Sattler, K.-U., Datenbanken: Implementierungstechniken, Heidelberg 2011 - Härder, Th., Rahm, E., Datenbanksysteme: Konzepte und Techniken der Implementierung, Berlin 2001 Current literature on newer database technologies | Compulsory Elective Module from List 1 "Methods in Computer Science" Introduction to Audiovisual Computing | | | | | | | | | | |--|-----------|--------|-----------------|-------------------------------------|---|----------|------------------------|----------|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | | points | semester | | | | | | | | 5.11 | 150 h | 5 | 5th/6th
sem. | Bi-annual
according
to demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | | 1 | Course | | Contact time | e Self- | Forms of te | aching | Planned | Language | | | | type | | | study | (learning m | nethods) | group size | | | | | Lecture | | 2 SCH/30 h | | To be annou course | nced in | 60 | German | | | | Practical | | 2 SCH/30 h | 45 h | | | 15 | German | | #### 2 Learning outcomes/competences As a sub-field of computer science, media informatics are strongly interdisciplinary. The background for their creation is the increasing digitalisation of text, image and video since the early 1990s. Countless new technologies and applications and the corresponding markets, fields of activity and job profiles have developed around the concept of multimedia. The generation, processing, storage and distribution of audiovisual signals are central aspects of media informatics. The special field of audiovisual computing deals with the interactions and technical fundamentals and possibilities on the one hand and artistic design on the other. Music informatics as a sub-field of audiovisual computing e.g. deals with all computer-based techniques and the
development of applications for the composition, production, distribution, billing/licensing and enjoyment of music and other audio products. In addition, special aspects of music management, the music business and the technical support of creative processes of music creators are the subject of the field. The students develop a scientific approach to this important sub-field of media informatics by means of a complex project from the field of audiovisual computing. Students experience and describe music, video and image as a complex cultural and technical phenomenon. They analyse aspects of the generation, production and distribution of audiovisual media in relation to the role of IT. The students include findings about music and visual communication as a universal cultural phenomenon in their considerations and familiarise themselves with scientific literature from anthropology, psychology and cultural studies. They use standard programmes of audiovisual computing and produce their own music and audiovisual works of art. In consultation with the lecturer, the students select project topics and work on these over a semester as a project group. They research the state of the art and science, formulate a development goal and work out the required skillset. They use current project management methods and tools. They implement selected parts of the modelling into functioning software. They present results in both academic as well as musical and visual art formats. #### 3 Contents Audiovisual computing uses methods and findings from various fields of computer science, physics, mathematics and cultural studies. The application of such methods is the main content of the course. The following topics are examples of possible content: - Development of basic technologies and frameworks for interactive art and media - Artistic projects in composition, music, media and video - Interactive installations for trade fairs, cultural institutions, museums and events - Immersive media in the public sphere - Visualisation and sonification of large datasets - Design of scenarios and soundscapes for cross-media and trans-media forms of narration - Design of interactive media (gaming, infotainment, web) - Mathematical foundations of music - Physical foundations of music - Analogue and digital sound generators - Audio digitisation and audio formats - MIDI - Virtual instruments and VST - Digital sound processing and alteration - Special audio programming languages - Audio libraries for all-purpose programming languages, esp. C/C++ - Agogic and the human factor - Music as a universal human phenomenon - Psychoacoustics and musical enjoyment - DAW programming - Development of applications and interfaces for artists and musicians in professional and non-professional use #### 4 Participation requirements None #### 5 Form of assessment Written examination or oral examination or term paper or project work or performance examination or scientific poster or short publication manuscript or research funding application or practical, excursion or daily protocol or portfolio or learning diary or OSPE or (according to Section 14 (4) RPO) a combination of different forms of assessment. #### 6 Condition for the award of credit points Passed module examination and, if necessary, certificate of successful participation ("Testat") 7 Application of the module (in the following study programmes): Computer Science (B.Sc.) #### 8 Module coordinator Prof. Dr. Dominic Becking #### 9 Other information #### Literature: - Current journals and proceedings on the topic. - Steppat, M.: Audioprogrammierung. Hanser, München, 2014. - Boulanger, R., Lazzarini, V. (Hgg.): The Audio Programming Book. MIT Press, Cambridge USA, 2011. - Mazzola, G.: Elemente der Musikinformatik. Birkhäuser, Basel, 2006. - Loy, G.: Musimathics the mathematical foundations of music, Vol. 1 u. 2. MIT Press, Cambridge USA, 2007. - Gouveia, D.: Getting Started with C++ Audio Programming for Game Development. Packt Publishing, Birmingham, 2013. - Brown, A. R.: Making Music with Java. o.O., 2005 - Richard Szeliski (2011): "Computer Vision: Algorithms and Applications", Springer - Gary Bradski, Adrian Kaehler (2008): "Learning OpenCV: Computer Vision with the OpenCV Library", O'Reilly - John F. Hughes, et al. (2014): "Computer Graphics: Principles and Practice", Addison-Wesley. - Dave Shreiner, Graham Sellers, John M. Kessenich, Bill Licea-Kane (2013): "OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.3", Addison-Wesley - Meinhard Müller (2015): Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications, Springer - Julius O. Smith III (2012): "Physical Audio Signal Processing: for Virtual Musical Instruments and Digital Audio Effects", W3K Publishing - Richard Boulanger, Victor Lazzarini (2010): The Audio Programming Book, MIT Press - John G. Proakis, Dimitris K Manolakis (2014): "Digital Signal Processing", Pearson | - | ulsory Electiv | | e from List | 1 "Methods in (| Computer | Science" | | Abbr.
FP | | |------|--|--|---|---|--|-------------|------------------------|-------------|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | | points | semester | | | | | | | | 5.12 | 150 h | 5 | 5th/6th
sem. | Bi-annual
according to
demand | Summer/
winter
according
to
demand | 1 sem. | Compulsory
elective | B.Sc. | | | 1 | Course | | Contact | Self- | Forms of | teaching | Planned | Languag | | | | | | hours | | | | | | | | | type | | | study | (forms of | learning) | group size | | | | | Lecture | | 2 SCH/30 h | 45 h 45 h | To be announced in 60 | | | German | | | | Drastical saves | | 0.0011/00 5 | | course | | 4.5 | German | | | 2 | Practical cours Learning out | | 2 SCH/30 h | | | | 15 | | | | | Functional programming is an important programming paradigm alongside object-oriented programming and distributed/parallel programming. Concepts from functional programming such as lambda expressions are gradually finding their way into modern languages such as Java9 and C#. The course introduces the concepts of functional programming and shows the implementation in the example languages Haskell and Scala. The students master important concepts of functional programming and can apply them using the Haskell and Scala programming languages. They recognise functional concepts in other | | | | | | | | | | 3 | Contents | arriiriirig i | ariguages aric | d can apply them | i iii a i esuii | is-oriented | maimer. | | | | | Lambo Higher Functi Data s (Algeb Functo Treatr Evalua Modul Calcul Type i Introd | ons and of
da notation
onal completructures
oraic) type
ors and ment of operation strate
arisation
ability and | operators on nctions: map, position and of es and type cl conads, combi- otional values tegies, lazines and interfaces d lambda calc systems the programr | asses, polymorp
natorial libraries
ss | ohism, patto | | ng | | | | 4 | Participation None | require | ments | | | | | | | | 5 | Form of asse | | | | | | | | | | | Oral examinat | | | | | | | | | | 6 | Condition for
Certificate of s | | | points
("Testat") and | passed mod | dule exami | nation | | | | 7 | Application of | of the mo | odule (in the | following study | • | | | | | | | Computer Sc | · | Sc.) | | | | | | | | 8 | Module coor | | | | | | | | | | | Prof. DrIng. Carsten Gips | | | | | | | | | - Pepper, Hofstedt: "Funktionale Programmierung", Springer, 2006 - Jeuring, Peyton-Jones: "Advanced Functional Programming", Springer, 2009 Block, Neumann: "Haskell Intensivkurs", Springer, 2011 Lipovaca, M.: "Learn You a Haskell", No Starch Press, 2011 Horstmann, C.: "Scala for the Impatient", Addison Wesley, 2012 Odersky, M.: "Programming in Scala", Artima, 2011 | | | Mod | | ue for Compu | | • | | | |------|--|---|--|--|---|---------------------------------|-----------------------------|-----------| | _ | ulsory Electiv | /e Modul | | ulty of Mind | en campus | | | Abbr. CC | | No. | Workload | Credit points | Study
semester | Frequency | Sem. Duration | | Туре | Q level | | 5.13 | 150 h | 5 | 5th sem. | Annual | Winter | 1 sem. | Compulsory elective | B.Sc. | | 1 | type Seminar lessons | | Contact
hours | | Forms of te | | | Language | | | | | | study | (forms of le | earning) | group size | | | | | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | 60 | German | | 2 | Practical / Ser | minar
——— | 2 SCH/30 h | 45 h | | 15 | | German | | | compu
• Stude
distrib
•
Stude | uting appl
nts learn
outed syst
nts learn | ications and
to describe e
em resources
to design, im | cial and open can apply the stablished alg s, taking into aplement and amounts of da | m.
orithms for t
account variouse a comple | the scaling
ous perforn | provision of nance criteria | ì. | | 3 | AWS, System Protoco Big Da Fog / Resou Stocha | Azure, Eum archite
cols, patte
ata Analyt
Edge Con
rce mana
astic metl | ucalyptus), Pactures, web a
erns and stan
tics and Paral
nputing appli
gement unde | lelisation (e.g
cations.
er flexible perf
ontext of load | oku, EC2), Sa
ce topologies
. Hadoop, Bi
formance crit | aaS (e.g. C
s.
gQuery, St | loudgene.
orm). | S (e.g. | | 4 | Participation
Formally: -, C
distributed sys | ontent: K | | databases, so | ftware engin | eering, we | b-based appl | ications, | | 5 | Form of asse | essment | | | | | | | | 6 | Project/semin
Condition for | | | | n examinatio | on. | | | | | Practical course
examination | | | | cipation ("Te | estat") and | passed modu | ule | | 7 | Application of Computer Scientification | | | following stud | dy programm | nes): | | | | 8 | Module coor | | | | | | | | | | Prof. Dr. Jörg | | nn | | | | | | | 9 | Other information | | | | | | | | | / rtitici | ılsory Electiv
al Intelliger | | e from List | 1 " | Methods in (| Computer | Science" | | Abbr. K | | | |-----------|--|--|---|---|---|--|--|------------------------|------------------|--|--| | No. | Workload | Credit points | Study
semester | | Frequency | Sem. | Duration | Туре | Q level | | | | 5.14 | 150 h | 5 | 5th/6th
sem. | ac | -annual
coording to
emand | Summer/
winter
according
to
demand | 1 sem. | Compulsory
elective | B.Sc. | | | | 1 (| Course | | Contact
hours | | Self- | Forms of | teaching | Planned | Languag | | | | t | ype | | | | study | (forms of | learning) | group size | | | | | | Lecture | | 2 SCH/30 h | | 45 h
45 h | To be anno
course | ounced in | | German
German | | | | | Practical cours | | 2 SCH/30 h | | 10 11 | | | 15 | | | | | 3 0 | of artificial intelligence for a concrete problem are acquired. Participants are able to apply the methods they have learnt to other areas and problems. Contents Selection of topics for lecture: | | | | | | | | | | | | • | - L
- C
- C
- C
- Knowled
- F
- L
- L | nformed branch-an Local sear Genetic ar Constraint or opagatic Games (mge represe Propositio Predicate Unification will be common to the control of cont | d-bound search (gradient and Evolutional satisfaction on and AC3 (ninimax algorentation and logic, syntax a, normal forrogramming (| rch
sea
ary
pro
edg
ithr
rea
and
pro
fy, I | oblems, backtr
ge consistency
m, alpha-beta
asoning:
d semantics, r
resolution calc
log)
Bayes' rule, Ba | arch, A* sead annealing
racking sea
)
pruning, h
models
culus | arch)
y)
rch with he
euristics) | | | | | **Please note:** The German version of this document is the legally binding version. The English translation provided here is for information purposes only. None #### Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus 5 Form of assessment Oral examination or written examination Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus Condition for the award of credit points 6 Certificate of successful participation ("Testat") and passed module examination 7 Application of the module (in the following study programmes): Computer Science (B.Sc.) Module coordinator 8 Prof. Dr.-Ing. Carsten Gips 9 Other information Russel, S., Norvig, P: "Artificial Intelligence. A Modern Approach", Prentice Hall, 2014 Ertel, W.: "Grundkurs Künstliche Intelligenz", Springer Vieweg, 2016 Bishop, C.: "Pattern Recognition and Machine Learning", Springer, 2007 Witten et al.: "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann, 2011 Mitchell: "Machine Learning", Mcgraw-Hill Education, 1997 | - | - | | | 1 "Methods i | - | r Science' | , | Abbr.
GL1 | |------|--|---|----------------------|---|---|--------------|------------------------|--------------| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 5.15 | 150 h | 5 | 5th/6th
sem. | Bi-annual
according
to demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | 1 | Course | | Contact
hours | Self- | Forms of te | eaching | Planned | Language | | | type | | liouis | study | (forms of le | earning) | group size | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou | ınced in | 60 | | | | Practical / Ser | minar | 2 SCH/30 h | 45 h | course | | 15 | German | | 4 | Geom Participation | etric mod | elling. | res: Methods | from comput | ational geo | ometry. | | | | Formal: -
Content: Knov | wledae fra | om module C | omputer Grap | hics (CG) | | | | | 5 | Form of asse | essment | | · | (= -) | | | | | | Condition for
Practical course
examination | | | t points
uccessful parti | cipation ("Te | estat"), pas | sed module | | | 7 | Application of Computer So | | | following stud | dy programm | nes): | | | | 8 | Module coor
Prof. Dr. Ker | | r | | | | | | | 9 | Curve
Morga
• de Bei | d Farin:
s and Sur
n Kaufma
rg, M., Ch | ann
neong, O., va | GD: A Practica
n Kreveld, M.,
Igorithms and | Overmars, I | | | | | - | ulsory Electiv | | | 1 "Methods i | in Compute | r Science' | | Abbr.
VL1 | |------|--|---|---|-------------------------------------|---|--------------|------------------------|--------------| | No. | Workload | | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 5.16 | 150 h | 5 | 5th/6th
sem. | Bi-annual
according
to demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | 1 | Course | | Contact
hours | | Forms of te | | Planned | Language | | | type | | | study | (forms of le | earning) | group size | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | 60 | | | | Practical / Ser | minar | 2 SCH/30 h | 45 h | 00 u 30 | | 15 | German | | 3 | | l lighting
isation. | methods: Ray | y tracing, radi | osity. | | | | | 4 | Participation | require | ments | | | | | | | | Formal: -
Content: Knov | wledge fro | om module Co | omputer Grap | hics (CG) | | | | | 5 | Form of asse
Oral examinat | | itten examina | ation | | | | | | 6 | Condition for
Practical course
examination | | | • | cipation ("Te | estat"), pas | sed module | | | 7 | Application of Computer So | | • | following stud | dy programn | nes): | | | | 8 | Module coor
Prof. Dr. Ker | | r | | | | | | | 9 | Comp
Pearso
• Foley
Comp | D., Bake
uter
Grap
on Interna
J., van Da | hics with Ope
ational Editior
am A., Feiner
hics - Princip | | | | | | | Practic | al Aspects of | | | "Methods in C | omputer | Science" | | Abbr.
PIS | |---------|--|---|--|---------------------------------------|-----------|--|------------------------|-------------------------------| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 5.18 | 150 h | 5 | 6th sem. | Annual according to demand | Summer | 1 sem. | Compulsory
elective | B.Sc. | | 1 | Course | | Contact
hours | Self- | Forms o | f teaching | Planned | Languag | | | type | | nour s | study | | (forms of ground | | | | | Lecture | | 2 SCH/30 h | 45 h | To be an | nounced | 60 | German | | | Practical / Ser | minar | 2 SCH/30 h | 45 h | in course | | 15 | German | | 2 | Learning out | comes / | competenc | es | | | | | | | Expertise: Students have an in-depth understanding of the modus operandi of attackers against IT systems and networks and of concrete attacks and dangers on the Internet. They are able to assess protective measures as well as to participate in the implementation of such protective measures. Methodological competence: Students can recognise attacks, describe, structure and classify the phases of an attack and outline and apply suitable protective measures. In addition, students can evaluate the suitability of (protective) measures and apply the measures. | | | | | | | able to
otective
ck and | | | | | | nwork, among ot
ns in the group a | | | | :he | | 3 | - Protective
- Typical at
o At
o At
o At | ethod (loc
measure
tacks on s
tacks on
tacks on
tacks on
pecial mon
tection | al/remote) s systems weaknesses i the configura web applicati nitoring or at | ition of systems | es | | | | | 4 | | c knowled | lge from Matl | hematics for Cor
eering, operating | | | | | | 5 | Form of asse | | niect work | | | | | | | 6 | Condition for
Passing the m
Section 17 "Pr | Oral examination or project work Condition for the award of credit points Passing the module examination. Section 17 "Progress Regulation" of the Examination Regulations for Computer Science (B.Sc.) | | | | | | | | | lappiles. | J | | | | | | | | 7 | applies. Application of Computer Science | of the mo | | following study | programm | nes): | | | # Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus Other information | | ulsory Electiv
ependability | e Modul | e from List 1 | I "Methods i | n Computer | Science" | Security | Abbr.
BSZ | | |------|--|---|--|---|-----------------------------------|------------------------------|---------------------|--------------|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | 5.19 | 150 h | 5 | 5th sem. | Annual
according
to demand | Winter | 1 sem. | Compulsory elective | B.Sc. | | | 1 | Course | | Contact
hours | Self- | Forms of te | | | Language | | | | type | | | study | (forms of le | orms of learning) group size | | | | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | | German | | | | Practical / Ser | ninar | 2 SCH/30 h | | | | | | | | 2 | Learning outcomes / competences | | | | | | | | | | | Expertise: The students understand the connections and differences between the safety terms Dependability, Safety and Security. They are familiar with typical vulnerabilities and threats and know suitable countermeasures and mechanisms to increase reliability and security. Methodological competence: Students can make initial assessments of the safety and reliability of systems and software, evaluate the possibilities and limits of solutions and propose possible improvements. | | | | | | | ity. | | | | Social compet students are a | | | | | | | the | | | 3 | Contents | | | | | | | | | | | Reliability maintaina Vulnerabil Basic form Design an Measures | and secu
bility,)
ity, threa
as of addr
d structur
and mech
cryptogra | rity objective;
;
t, impact and
ressing risks
re of risk trea
nanisms to in | safety and reles (confidential risk analyses atment plans crease the relication, access | lity, integrity ;; iability and s | security of s | | | | | 4 | Participation | | ments | | | | | | | | | Formal: -
Content: Knov
skills, technica | vledge fro | om Mathemat | | | | | 9 | | | 5 | Form of asse | | itton oversiss | ation or project | st work | | | | | | 6 | Oral examinat
Condition for | | | | , WUIK | | | | | | | Passing the m
Section 17 "Pr
applies. | odule exa | amination. | - | ion Regulatio | ons for Com | nputer Scienc | e (B.Sc.) | | | | Application of Computer Scientification | | | following stud | dy programn | nes): | | | | | 8 | Module coord | dinator | | | | | | | | | | Prof. Dr. Chris | | el | | | | | | | | 9 | Other inform | ation | | | | | | | | | - | Isory Elective
ed Programr | | | "Methods of | Computer | Science" | | Abbr.
SM | |------|---
--|---|--|--|--|--|-------------| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | points | semester | . , | | | | | | 5.20 | 150 h | 5 | 5th/6th | Bi-annual | Summer/ | 1 sem. | Compulsory | B.Sc | | | | | sem. | according to | winter | | elective | | | | | | | demand | according | | | | | | | | | | to demand | | | | | | Course | | Contact | Self- | Forms of | teaching | Planned | Langua | | | | | hours | | | | | | | | type | | | study | (forms of | learning) | group size | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | l
To be anno | ounced in | 60 | German | | | | | | | course | | | | | | Practical cours | se | 2 SCH/30 h | 45 h | | | 15 | German | | 2 | Learning out | comes / | competenc | es | | | | | | | | | | different progra | | | | oncepts | | | | | | They get to kn | | | | | | | | | | ming languages
ning languages | | | | | | | | | | lependently. Af | | | | | | | | | | e paradigm and | | | | oudio, | | | programming | language | in a solution | -oriented way. | | | · · | | | | Contents Selection of to | | | | | | | | | | - (c) r r r r r r r r r r r r r r r r r r r | Dbject-orinetaproguenctions, Hybrid obsomprehe ype) Logical prail, accurention of sealculabilical prail accureration of sealculabilical prail accureration of sealculabilical accuration o | ented progra
ramming) I programmin
data types/t
ject-oriented
nsions, traits ogramming (
nulators; cuts
t/parallel pro-
elected conce
ity and lambor
a strategies, I
types with pa-
porial libraries
acy on the JVI
of optional or
ext/Xtend, Ece | ogramming (for
epts
da calculus
azyness
attern matching
, functors and r
M using actuato
null/nil values
clipse plugins, A | duck typing
abda notation
programmi
pjects, patte
ion, resolut
example E
monads
ors in Akka | on, currying
ng (Scala:
ern matchir
ion, recurs | g, higher ord
list
ng, option da | er
ta | | | | | | IL; Eclipse EMF/
tlab/Simulink) | GIVIF,) | | | | | | | | <u> </u> | dab/ Simulink) | | | | | | | Participation | require | ments | | | | | | | | None | | | | | | | | | | Form of asse | | itton ovemin | ation | | | | | | | Oral examinat | | | | | | | | | | Condition for
Certificate of s | | | t points
n ("Testat") and | I passed me | odule exam | nination | | | | por uniouto of 3 | Jacobssiu | , participatioi | i ciostat j and | , pusseu ili | CAGIC CAGII | 14 (1011 | | | | Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus Computer Science (B.Sc.) | |---|--| | 8 | Module coordinator Prof. DrIng. Carsten Gips | | 9 | Other information Tate, B.A.: "Seven Languages in Seven Weeks", Pragmatic Bookshelf Inc., 2010 Scott, M.L.: "Programming Language Pragmatics", Morgan Kaufmann, 2009 Lipovaca, M.: "Learn You a Haskell", No Starch Press, 2011 Block, Neumann: "Haskell Intensivkurs", Springer, 2011 Horstmann, C.: "Scala for the Impatient", Addison Wesley, 2012 Odersky, M.: "Programming in Scala", Artima, 2011 Subramaniam, V.: "Programming Groovy 2", O'Reilly, 2013 Thomas, Hunt: "Programming Ruby", O'Reilly, 2013 Voelter, M.: "DSL Engineering: Designing, Implementing and Using Domain-Specific Languages", CreateSpace Independent Publishing Platform, 2013 Bettini, L.: "Implementing Domain-Specific Languages with Xtext and Xtend", PACKT Publishing, 2013 Pepper, Hofstedt: "Funktionale Programmierung", Springer, 2006 | | | Pepper, Hofstedt: "Funktionale Programmierung", Springer, 2006 Johan Jeuring, Simon Peyton Jones: "Advanced Functional Programming", Springer, 2009 | | - | oulsory Elec
oiler Constru | | ıle from Lis | t 1 "Method: | s in Comput | er Science | <u>,</u> " | Abbr.
CB | |------|---|---|---|---|--
--|---|--| | No. | Workload | Credit
points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 5.21 | 150 h | 5 | 5th sem. | Annual | Winter | 1 sem. | elective | B.Sc. | | 1 | Course typ | e | Contact
hours | Self-
study | Teaching (learning | | Planned
group size | _anguage | | | Sem. lesson
Practical / S | | 2 SCH/30 h
2 SCH/30 h | | To be anno in course. | unced | 60
15 | German
and
English | | 2 | Learning o | utcomes/ | competend | es | | | | | | | familiar wit
the procedu
and/or inte
compiler. In selected
Alberta (Ed | th the structures covered the | eture of comed to tasks whe methods s, the modul anada). Thr | ne basic technipilers and the where formal discussed are may be conough the intertion country a | stages of tratext needs to applied in a ducted in coornational exc | anslation. To be edited a project to coperation when the project with the project in | hey are able to and/or transforce to the construct a (so it it is the University learn about 1997). | to apply
ormed
mall)
sity of
out the | | 3 | Contents | | | | | | | | | | Ove Req Lex Syr Cor LLV Par | erview of p
gular and c
kical analys
ntactic ana
ntext-sensi
/M-IR
rser/compil | context-free
sis: scanners
lysis: LL(k)
itive analysis
ler generato | g paradigms a
languages an | d grammars
act syntax tr
es
R) | | | | | 4 | Participati | ion requir | ements | | | | | | | | None | | | | | | | | | 5 | performand | amination,
ce examina | or oral exan
ition, or OSF | nination, or wi
PE, or open-bo
eral forms of | ok examinat | | | th Section | | | | | held digitall | | | | | | | 6 | | | vard of cre | dit points
if necessary, (| cortificate of | successful | participation (| "Tostat") | | 7 | | | | he following s | | <u> </u> | vai ticipation (| i estat) | | | Computer S | Science (B. | Sc.) | | | | | | | 8 | Module co | | | | | | | | | | Prof. DrIn | | Gips
hristina Geor | cao | | | | | | 9 | Other info | | iristina Geor | ge | | | | | | | Par Aho | strom, R.:
r, T.: "The | Definitive A | terpreters," G
NTLR 4 Refer
"Compilers: F | ence," Pragm | natic Progra | | | - Torczon, Cooper: "Engineering a Compiler," Academic Press, 2011 - Grune et al.: "Modern Compiler Design," Springer, 2012 Further literature will be announced in the course. | - | ulsory Electiv | | | | - | outer Scie | nce" | Abbr.
CG2 | |------|--|---|--|---|---|------------|------------------------|--------------| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 6.20 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according to
demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | | Course | | Contact
hours | | Forms of te | | Planned | Language | | | type | | | study | (forms of le | earning) | group size | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | 60 | | | | Practical / Ser | minar | 4 SCH/ 30 h | 315 h | | | 15 | German | | 3 | select current Contents | tools from | n the field of | computer gra | phics. | | | | | | The topics cor
partners in the
• Efficie | e followin
nt data st
uter Aideo
worked c | g areas:
cructures of c
d Geometric I
on in a team; | interdisciplina | hics. | | | | | 4 | Participation | · | | ve module. | | | | | | | Formal: -
Content: Knov | vledge fro | om module C | omputer Grap | hics (CG) | | | | | | Form of asse
Project work | essment | | | | | | | | 6 | Condition for
Successful cor | | | | | | | | | 7 | Application of Computer So | | | following stud | dy programn | nes): | | | | 8 | Module coor
Prof. Dr. Ker | | r | | | | | | | 9 | Curve
Morga
• de Be | d Farin:
s and Sur
in Kaufma
rg, M., Ch
rithms ar | ann | GD: A Practica
n Kreveld, M.,
is, | · | M.: Compu | tational Geor | metry | | - | ulsory Electiv | | | | - | outer Scie | nce" | Abbr.
VR2 | |------|--|--|--|--|---|-------------|------------------------|--------------| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 6.21 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according to
demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | | Course
type | | Contact
hours | Self-
study | Forms of te | _ | Planned group size | Language | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | 60 | | | 2 | Practical / Ser
Learning out | | 4 SCH/ 30 h | | | | 15 | German | | 3 | current proble
and select cur
Contents | | | | oie to evalua | te appropri | ate methods | | | | The topics corpartners in the Visual Usabil (Serio | e followin isation te ity and in us) game I reality a worked o | ng areas:
chniques: Me
aformation vises.
applications.
on in a team; | ethods for opti
sualisation.
interdisciplina | mised presei | ntation. | | | | 4 | Participation
Formal: -
Content: Know | require | ments | | hics (CG) | | | | | 5 | Form of asse
Project work | essment | | | | | | | | 6 | Condition for
Successful cor | | | | | | | | | 7 | Application o Computer So | | • | following stud | dy programn | nes): | | | | 8 | Module coor
Prof. Dr. Ker | | er | | | | | | | 9 | Comp
Pearso
• Foley
Comp | D., Bake
uter Grap
on Interna
J., van D | ohics with Ope
ational Edition
am A., Feiner
ohics - Princip | | | | | | | _ | ulsory Electiv | | | | _ | | nce" | Abbr.
CSK | |------|---|--|--|--|--|--|---|---------------------| | No. | Workload | Credit points | Study
semester | Frequency | | Duration | Туре | Q level | | 6.22 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according
to demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | 1 | Course | | Contact
hours | Self- | Forms of te | eaching | Planned | Language | | | type | | | study | (forms of le | earning) | group size | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
in course | ınced | 60 | | | | Practical / Ser | minar | 4 SCH/ 30 h | 315 h | | | 15 | German | | | realisation me
forms of comr
Contents
The software a
visualisation,
and sociology
implement cre
mechanisms b
communicatio | application computer an interceptive, ne petween h | n and are fan
ns to be crea
vision, music
disciplinary of
w forms of co
umans and n | ted come fror cinformatics, rientation is domination is dominated in achines or be | m the applica
AI, game the
esirable. Stu
, action
scen
etween huma | ew algorith
tion fields
eory, robot
dents will of
arios and in | of media info
ics, art, psyc
design and
nteraction
achines as | ormatics,
hology | | 4 | Participation | require | ments | | | | | | | | None | | | | | | | | | | Form of asse
Project work | essment | | | | | | | | 6 | Condition for
Successful cor | | | | | | | | | 7 | Application o Computer So | | | following stud | dy programm | nes): | | | | 8 | Module coord
Prof. Dr. Dor | | king, Prof. Dr | . Kerstin Mülle | er | | | | | 9 | Other inform | ation | | | | | | | | - | ulsory Electiv | | e from List | 2 "Application | ons of Comp | outer Scie | nce" | Abbr.
DBA | |------|--|---|---|---|--|---|--|---| | No. | Workload | Credit | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 6.23 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according
to demand | according
to demand | 1 sem. | Compulsory elective | B.Sc. | | 1 | Course | | Contact
hours | Self- | Forms of te | · · | Planned | Languag | | | type | | | study | (forms of le | earning) | group size | | | | Lecture | | 2 SCH/30 h | 360 h | To be annou in course | ınced | 60 | German | | | Practical cours | se | 4 SCH/60 h | | | | 15 | German | | | Databases are and database different softw system classe of an application the database user program | is of utm
vare systes
and imp
ion progra
with Persi | ost importancem classes for
blement them
amme and a clastent Stored | ce. The studer
r databases. They design
coordinated d | nts survey ar
They design s
and implem
atabase. The | nd formulat
special data
ent a softw
y impleme | te the require
a models for
vare system on
t programm | ements of
different
consisting
te logic in | | 3 | Requireme Object-ori Persistent Trigger Impedanc Cursors Object Re | systems a
ents analy
ented and
Stored M
e Mismate
lational M | and requirements ysis for datab d ER modellin lodules (SQL/ | ents for datab
ase application
g
(PSM) | pases
ons | GQL/OLB) | | | | 4 | Participation
Formal: -
Content: Cont | • | | atabase Syste | ems I" (DB1) | | | | | 5 | Form of asse
Performance e
excursion or o | essment
examinati | on or oral exa | amination or t | term paper o | | | cal, | | 6 | Condition for
Practical cours
Passed modul | se with ce | ertificate of su | - | icipation ("Te | estat") | | | | | Passed module examination Application of the module (in the following study programmes): | | | | | | | | | 7 | Computer So | | | following stud | dy programm | 103). | | | | 8 | | cience (B. | Sc.) | following Stu | uy programm | 103). | | | | - | ulsory Electiv | | le from List | 2 "Application | ns of Comp | outer Scie | nce" | Abbr.
ESW | |-------------|--|---|--|---|---|------------|------------------------|--------------| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | 6.24 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according to
demand | Summer/
winter
accordin
g to
demand | 1 sem. | Compulsory
elective | B.Sc. | | | Course | | Contact
hours | Self- | Forms of | J | Planned . | Language | | | type | | | study | (forms of | learning) | group size | | | | Lecture | | 2 SCH/30 h | 45 h | To be anno
in course | ounced | German | | | 2 | Practical cours | se | 4 SCH/60 h | 315 h | | | 15 | German | | | "embedded so
management | oftware" f | or an applica | s work indepen
tion. In the tea
are deepened. | | | | evelop | | 3 | SoftwUML/SEmberQualit | SysML for dded ope sy assurar ging conte | Embedded S
rating system
nce and stand | lards
jects on curren | | · | nt | | | | Things, comp | uter visio
traction la | n, robotics, n
ayers or oper | oped as an in-oneasurement ar
ating systems foliations of the systems foliations are systems for the systems foliations are systems for the systems for the systems are systems for the systems are systems for the systems are systems. | nd control to | echnology) | . In the proce | ess, | | | Participation Formal: - | - | | systems, softwa | are enginee | ring and C | + + programr | mina | | | Content: Knowledge of embedded systems, software engineering and C++ programming Form of assessment | | | | | | | | | 5 | Form of asse | | | | | | program. | ning | | 5 | Form of asse
Project work
Condition fo | essment
r the aw | ard of credi | | | | , , , p. eg. a | ning | | 5 | Form of asse
Project work
Condition fo
Successful co
Application of | r the awompletion | of the project
odule (in the | | y programn | nes): | , , p. ogra | ming | | 5
6
7 | Form of asse
Project work
Condition for
Successful co | r the aw
ompletion
of the modience (B.
dinator | of the project
odule (in the
Sc.) | ct work | y programn | nes): | , program | ming | | Compu | Isory Elective | e Module | from List 2 | "Application | ns of Compi | uter Scien | ce" | Abbr. BIS | |---------|-----------------|----------|------------------|----------------------------------|--------------------------|------------|------------------------|-----------| | Interne | et Security | | | | | | | | | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | points | semester | | | | | | | 6.25 | 450 h | 15 | 5th sem. | Annual
according
to demand | Winter | | Compulsory
elective | B.Sc. | | 1 | Course | | Contact
hours | Self- | Forms of te | aching | Planned | Language | | | type | | | study | (forms of le | earning) | group size | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 60 h | To be annou
in course | ınced | 60 | German | | | Practical / Ser | minar | 4 SCH/60 h | 300 h | | | 15 | German | #### 2 Learning outcomes / competences #### Expertise: The students are familiar with the most important basic technologies for securing networks. They demonstrate an in-depth understanding of security mechanisms at the different protocol layers (application layer, transport layer, network layer, link layer, physical layer) and know the structure, principles, architecture and functioning of security components and systems in the field of internet security. They are able to explain in detail the characteristics and basic principles of the problem space of internet security and demonstrate a sound knowledge of practice and theory in this field. Furthermore, they are familiar with current developments in the field of internet security and can explain them (e.g. security in peer-to-peer systems, security in mobile networks, security in cloud computing, block chains, etc.). #### Methodological competence: Students will be able to apply the basics of IT security and cryptography to the field of communication networks and thus develop and evaluate solutions for internet security. Social competence: Due to the teamwork, among other things in the practical tasks, the students are able to develop solutions in the group and solve tasks cooperatively. #### 3 Contents - Internet security: Introduction, motivation and challenges - Basic feature: Reference model for network security, security standards for networks and the Internet, threats, attacks, security services and mechanisms - Cryptographic basics for securing networks: symmetric cryptography and their application in networks, supporting mechanisms for the implementation of security solutions, public key infrastructures - Security at the different protocol layers (application layer, transport layer, network layer, link layer, physical layer) - Applied Internet Security: Firewalls, Intrusion Detection Systems, Identity Management - Selected topics in internet security: Security for Distributed Systems, Security for Web Applications and Web Services, Security for Cloud Computing - Changing content of the projects on current topics - Replication of attack scenarios and countermeasures in the laboratory #### 4 Participation requirements | | Madula estalagua for Computor Science (D.S.) | |---|--| | | Module catalogue for Computer Science (B.Sc.) | | | of the Faculty of Minden Campus | | | Formal: - Content: Knowledge of Java or C++ programming, basic knowledge of technical computer science, distributed systems and communication networks | | 5 | Form of assessment | | | Oral examination or written examination or project work | | 6 | Condition for the award of credit points | | | Passing the module examination. Section 17 "Progress Regulation" of the Examination Regulations for Computer Science (B.Sc.) applies.
 | 7 | Application of the module (in the following study programmes): | | | Computer Science (B.Sc.) | | 8 | Module coordinator | | | Prof. Dr. Christoph Thiel | | 9 | Other information | | | Literature: | | | • Eckert, C.: IT security: Konzepte - Verfahren, Oldenbourg Wissenschaftlicher Verlag; ISBN: 978-3-486-72138-6, 8th edition 2013. | | | Schwenk, Jörg: Security and cryptography on the internet: Von Sicherer E-Mail bis zu
IP- Verschlüsselung (German Edition), Vieweg+Teubner Verlag ISBN: 978-3834808141
3rd ed. 2010 | | | Stallings ,William; Network Security Essentials, 4th Edition, Prentice Hall, ISBN: 978-0-136-10805-9, 2010, Current professional articles | | - | oulsory Elective Module from List 2 "Applications of Computer Science" e Applications | | | | | | | | | | | |------|---|---|--|---|--|---|--|--|--|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | | 6.26 | 450 h | 15 | 5th/6th
sem. | Bi-annual | Summer/
winter | 1 sem. | Compulsory elective | B.Sc. | | | | | | Course | | Contact
hours | | (forms of learning) gro | | Planned . | Language | | | | | | type
Lecture | | 2 SCH/30 h | study
60 h | | | group size 60 | German | | | | | | Practical / Ser | ninar | 4 SCH/60 h | 300 h | in course | | 15 | German | | | | | 2 | Learning out | comes / | competenc | es | | | | | | | | | | solution them of them of them of the
second th | stand the on approad quantitating know systematics and over a curreduction to their owner a curreduction according to their owner according to their owner according to the current | special featurches of mobility of stem architectapply this known that system (fown mobile appeads, studented to the stem of the system (fown mobile appeads, studented to the stem of the system (fown mobile appeads, studented to the system (fown mobile appeads, studented to the system of syst | res and boundle application ture and application will be applicated application from the application of | developmentication developmentically to solve platforms addroid). After king usability endently on | opment so
re concrete
and mobile
attending
r, energy a
projects al | be able to es
lutions tailore
tasks.
operating sy
the course, t
nd security a | timate ed to this, stems and hey will be spects into | | | | | 3 | Applications Current soft Use of hardv Integration c Changing co Resource n | & Applica
ware fram
ware comp
of existing
ntent of t
nanageme | ation Develop
neworks for n
ponents of m
g sensors and
the projects o | nobile application obile devices interfaces on current topic systems and | tions
cs, e.g. | cts | | | | | | | | Participation
Formally: -, C | • | | programming | , software er | ngineering | | | | | | | _ | Form of asse
Project work | essment | | | | | | | | | | | | Condition for
Successful cor | | | | | | | | | | | | | Application of Computer Scientification of the computer t | | | following stud | dy programn | nes): | | | | | | | | Computer Science (B.Sc.) Module coordinator Prof. Dr. Martin Hoffmann (covered by Prof. DrIng. Matthias König) | | | | | | | | | | | | | Prof. Dr. Marti | <u>in Hof</u> fma | ınn (covered | by Prof. Dr. D | rIng. Mattl | nias König) | | | | | | References: Thomas Künneth: Android 7 - Das Praxisbuch für Entwickler, Rheinwerk Verlag 2017 | - | lsory Elective | | from List 2 | :: | | | | Abbr.
FSD | | | |------|---|--|--|---|---|----------|---------------------|------------------|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 6.27 | 450 h | 15 | 6th sem. | Annual | Summer | 1 sem. | Compulsory elective | B.Sc. | | | | | Course
type | | Contact
hours | Self-
study | Forms of to | | Planned group size | Languag | | | | | Seminar lessons
Practical / Seminar | | 2 SCH/30 h
4 SCH/60 h | 60h
300h | To be annou
in course | ınced | 60
15 | German
German | | | | | Students learn about current architectures, technologies and tools for the development of full stack applications for different end devices and can apply them. Students learn to independently find suitable solutions for practical problems and to implement and test them in a targeted manner using software tools. Students learn to make use-case specific technology decisions for front-end, backend and database components of distributed applications. They will learn about architecture patterns for the appropriate division of large software projects and be able to apply them to software projects. | | | | | | | | | | | 3 | DesignMicrosPlanniRespoModerFrontBacke | n patterns
services a
ng and d
nsive sing
n prograi
end techno
nd techno | s, architectur
nd monolithic
evelopment c
gle-page app
mming langu-
nologies (e.g.
blogies (e.g. | v, requiremen
es, frameworl
c server archi
of scalable and
lications.
ages (e.g. ECI
. Angular, Rea
Node.js, Djan-
pases (e.g. Po | ks.
tectures.
I secure soft
MAScript, Go
act, Vue).
go). | , Rust). | onents. | | | | | | Participation Formally: -, C engineering, v | require
ontent: K | ments
Inowledge of | object-oriente | ed programm | | ases, softwar | re | | | | 5 | Form of asse
Project work | | - 3ppdation | -, 5.03.3 001110 | <u>-</u> | | | | | | | | Condition for
Successful cor | | | • | | | | | | | | | Application of Computer Scientification | | • | following stu | dy programn | nes): | | | | | | | Module coor
Prof. Dr. Jörg | | nn | | | | | | | | | | Other inform | | | | | | | | | | | Compu | Isory Elective | e Module | from List 2 | . "A | Applications of | of Comput | er Science | e" | Abbr. | |--------|-----------------|----------|-------------|-------------------------------------|-----------------|------------|------------|------------|----------| | Softwa | re Quality | | | | | | | | 32 | | No. | Workload | Credit | Study | | Frequency | Sem. | Duration | Type | Q level | | | | points | semester | | | | | | | | 6.28 | 450 h | 15 | 5th/6th | Bi-annual
according to
demand | | Summer/ | 1 sem. | Compulsory | B.Sc. | | | | | sem. | | | winter | | elective | | | | | | | | | according | | | | | | | | | | | to | | | | | | | | | | | demand | | | | | 1 | Course | | Contact | | Self- | Forms of | teaching | Planned | Language | | | | | hours | | | | | | | | | type | | | | study | (forms of | learning) | group size | | | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | | 60 h | To be anno | ounced in | 60 | German | | | | | | | | course | | | | | | Practical cours | se | 4 SCH/60 h | | 300 h | | | 15 | German | #### 2 Learning outcomes / competences The course introduces techniques and methods for software quality assurance in the development and maintenance of software systems. Successful participation in the course will provide an understanding of software quality and the importance of systematic software testing. The participants know the general test process and the roles involved. They know different test levels and types and are able to select and use different static and dynamic testing techniques and tools according to requirements. Participants will be able to develop higher quality software using the methods learned. The lecture serves to convey basic theoretical knowledge and skills, with practical application being learned and deepened in the accompanying project. Through the team-oriented project work, the participants' project management and self-competences are deepened. After successful participation in this module, it is optionally possible to take an examination for "Certified Tester - Foundation Level" according to ISTQB at an examination institute certified by the German Testing Board. #### 3 Contents Selection of topics for lecture: - Quality aspects of software systems - Basics of software testing, test principles, fundamental test process - Testing in the software life cycle, test levels and types - Static testing techniques: Reviews, static analysis - Dynamic test techniques, test design - Specification-based (black box): Equivalence partitioning and boundary value analysis, decision tables, state-based test, other black-box design methods - Structure-based (white-box): Coverage (C0, C1, C2, C3), control flow anomalies and data flow anomalies - Experience-based test: Error Guessing, Exploratory Testing - Test concept, test strategy, test management - Tools None - Test automation - Test case generation - Changing content of the projects on current topics #### 4 Participation requirements #### Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus 5 Form of assessment Project work 6 Condition for the award of credit points Module examination pass 7 Application of the module (in the following study programmes): Computer Science (B.Sc.) 8 Module coordinator Prof. Dr.-Ing. Carsten Gips 9 Other information Spillner, A., Linz, T.: "Basiswissen Softwaretest", dpunkt-Verlag, 2012 Kleuker, S.: "Qualitätssicherung durch Softwaretests", Springer Vieweg, 2013 Liggesmeyer, P.: "Software-Qualität", Springer Spektrum, 2009 Klaus Franz: "Handbuch zum Testen von Web- und Mobile-Apps", Springer Vieweg, 2014 Robert Martin: "Clean Code", Prentice Hall, 2008 Michael Feathers: "Working Effectively with Legacy Code", Prentice Hall, 2013 Roy Osherove: "The Art of Unit Testing", Manning, 2013 Gerard Meszaros: "xUnit Test Patterns", Addison Wesley, 2007 Kent Beck: "Test Driven Development", Addison-Wesley, 2002 Graham et al.: "Foundations of Software Testing", Cengage Learning, 2012 Myers, G.J.: "The Art of Software Testing", John Wiley, 2011 | | ulsory Elective Module from List 2 "Applications of Computer Science" ngineering | | | | | | | | | | | | | | | | |------|---
--|--|--|--------------------------------|-----------------------------|------------------------------|---|--|--|--|--|--|--|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | | | | | | | 6.29 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according to
demand | Summer/
winter at
demand | 1 sem. | Compulsory
elective | B.Sc. | | | | | | | | | | 1 | Course | | Contact
hours | Self- | Forms of | | Planned | Languag | | | | | | | | | | | type | | | study | (forms of | (forms of learning) | | | | | | | | | | | | | Lecture | | 2 SCH/30 h | 60 h | To be anno | ounced in | 60 | German | | | | | | | | | | | Practical cours | se | 4 SCH/60 h | 300 h | 004130 | | 15 | German | | | | | | | | | | 2 | Learning out | comes / | competenc | es | | | | | | | | | | | | | | | The skills acqı
design and re | low and a
uired thus
alisation o
Team-or | ssess future
contribute in
competences | developments n particular to the and to the exp t work also inc | the develop
ansion of sp | ment of spo
pecific tech | ecific analysi:
nological | | | | | | | | | | | 3 | Introduction t Product dev Requiremen Modelling of Web applica Testing web Web project Quality asped Java-based Web applica Web applica | elopment
ts engine
web appl
tion archi
applicatio
manager
ects (usab
web fram
ations wit | ering for web
ications
tecture
ons
nent
ility, perform
eworks e.g. s
h JavaScript | applications
nance, security)
JSF with Primef
and HTML5 | aces, Richfa | aces and JF | | Contents Introduction to web engineering (motivation, definition, basic principles) • Product development • Requirements engineering for web applications • Modelling of web applications • Web application architecture • Testing web applications • Web project management • Quality aspects (usability, performance, security) • Java-based web frameworks e.g. JSF with Primefaces, Richfaces and JPA • Web applications with JavaScript and HTML5 | | | | | | | | | | | Frameworks for Javascript e.g. Knockout JS, Angular JS, Node JS Formal participation requirements: - Content: Web-based applications, object-oriented programming, programming methodics, | | | | | | | | | | | | | | | | | 4 | requirement
Content: Wel | s: -
o-based a | | object-oriented | programmi | ng, progra | mming meth | odics, | | | | | | | | | | | requirement
Content: Wel
software engi | s: -
b-based a
neering, c | | object-oriented | programmi | ng, progra | mming meth | odics, | | | | | | | | | | 5 | requirement
Content: Wel
software engil
Form of asse | s: -
b-based a
neering, c | | object-oriented | programmi | ng, progra | mming meth | odics, | | | | | | | | | | 5 | requirement
Content: Wel
software engi | s: - p-based a neering, c essment r the awa | latabases ard of credit | t points | programmi | ng, progra | mming meth | odics, | | | | | | | | | | 5 | requirement Content: Wel software engil Form of asse Project work Condition for Successful contents | s: - p-based a neering, c essment r the awa completion of the mo | ard of credit
of the project | t points | | | mming meth | odics, | | | | | | | | | Please note: The German version of this document is the legally binding version. The English translation provided here is for information purposes only. - Kurz, Marinschek: "JavaSever Faces 2.2: Grundlagen und erweiterte Konzepte", dpunkt 2013 - Kappel, Pröll, Reich, Teschitzegger: Web-Engineering, dpunkt 2004 - Backschat, Martin: "Enterprise JavaBeans und JPA" Springer Spektrum 2016 - Tarasiewicz: "Angular JS Framework", dpunkt 2014 | • | oulsory Elective Module from List 2 "Applications of Computer Science" cations in Artificial Intelligence | | | | | | | | | | | | |------|---|--------|------------|--------|-------------|-----------------------|----------|------------|----------|--|--|--| | No. | Workload | Credit | Study | | Frequency | Sem. | Duration | Туре | Q level | | | | | | | points | semester | | | | | | | | | | | 6.30 | 450 h | 15 | 5th/6th | В | i-annual | Summer/ | | Compulsory | B.Sc. | | | | | | | | sem. | a | ccording to | winter | | elective | | | | | | | | | | demand | | accordin | | | | | | | | | | | | | | g to | | | | | | | | | | | | | | demand | | | | | | | | 1 | Course | | Contact | | Self- | Forms of | teaching | Planned | Language | | | | | | type | | hours | | study | (forms o
learning) | | group size | Lecture | | 2 SCH/30 h | | 60 h | L | | 60 | German | | | | | | Practical cours | se | 4 SCH/60 h | | 300 h | Р | | 15 | German | | | | | _ | | | | | | | | | | | | | #### 2 Learning outcomes / competences Understanding of current concepts, methods, techniques, tools and experiences for the engineering development of artificial intelligence applications as well as their practical application in own project work in development teams. - Assess potential risks of artificial intelligence applications - Ability to follow and assess future developments in the field of AI The skills acquired thus contribute in particular to the development of specific analysis, design and realisation competences and to the expansion of specific technological competences. Team-oriented project work also increases project management and selfcompetences. #### 3 Contents - Al application projects are created in teamwork - Application of machine learning methods (e.g. neural networks, deep learning, support vector machine, decision trees, clustering methods) - Sensors (video, audio, infrared camera, electroluminescence camera, weather data, indoor air parameters, characteristic measuring devices, robots, copters) - Processing large amounts of data from research and application projects of the lecturers in teamwork - Feature extraction with elements of image processing and language processing - Application of libraries of modern tools for data analysis and machine learning (e.g. Python, NumPy, Pandas, SciPy, Jupyter, IPython or WEKA or KNIME) The focus is largely on the independent processing of a complex task within the framework of a development project in a team, which can also be processed in cooperation with research and development departments of companies. As a rule, the project groups consist of 2–4 students who are to come together freely, choose a project leader from among themselves and develop according to procedural models agreed with the lecturers. The lecturer defines the objective and conducts a regular discourse on the progress of the AI project #### 4 Formal participation requirements: - **Content:** Artificial Intelligence (Subject List 1- Methods in Computer Science), Object-Oriented Programming, Databases #### 5 Form of assessment | | Module catalogue for Computer Science (B.Sc.) of the Faculty of Minden Campus Project work | |---|---| | 6 | Condition for the award of credit points Successful completion of the project work | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | 8 | Module coordinator Prof. DrIng. Grit Behrens | | 9 | Other information Ian H. Witten "Data Mining: Practical Machine Learning Tools and Techniques", ELSEWVIER 2017, ISBN 978-0128042915 Thomas Haslwanter "An Introduction to Statistics with Python", Springer Nature 2016, ISBN 978-3-319-28316-6 Miroslav Kubat "An Introdruction to Machine Learning", Springer Nature 2017, ISBN 978-3-319-63912-3 | | Janne | ulsory Electiv
Programmin | | e from List 2 | : | | | | Abbr.
GPR | | | | | | |------------------|--|--|--|---|-------------------------------------|---------------------------|--------------------------------|---------------|--|--|--|--|--| | No. | Workload | Credit | Study | Frequency | Sem. | Duration | Туре | Q level | | | | | | | | | points | semester | • | | | | | | | | | | | 6.31 | 450 h | 15 | 6th sem. | Bi-annual | Summer/ | 1 sem. | Compulsory | B.Sc. | | | | | | | | | | | according | winter | | elective | | | | | | | | | | | | to | according | | | | | | | | | | | | | | demand | to demand | | | | | | | | | | 1 | Course | | Contact time | | Forms of te | aching | Planned | Language | | | | | | | | type | | | study | (learning m | nethods) | group size | _ | Seminar lesso | ins | 2 SCH/30 h | 60h | To be annou | nced in | 60 | German | | | | | | | | Practical /
Seminar | | 2 3011/3011 | 0011 | course. | 11000 | | German | | | | | | | | | | 4 SCH/60 h | 300h | 15 | | 15 | German | | | | | | | 2 | Learning out | comes/ | competences | | | | | | | | | | | | 3 | simula Stude hardw As par C/C+- Contents Basics Setup 2D gra Inputs Sound Game | ation or b
nts are al
are abstr
t of a pro
+, e.g. us
s, motivat
/ game la
aphics / s
s and eve
l
Al | prites / anima | vith simple godently progra
ents have im
of libSDL2.
requirement | raphics and value a complemented so | vithout cor
outer game | nplex game e
e using only a | engines.
a | 4 | Participation requirements | | | | | | | | | | | | | | - | Formal: -, Cor | ntent: Kn | owledge of pro | Formal: -, Content: Knowledge of programming, software engineering | | | | | | | | | | | 5 | Form of asse | | owledge of pro | ogramming, s | software eng | ineering | | | | | | | | | 5 | | | owledge of pro | ogramming, s | software eng | ineering | | | | | | | | | 5 | Form of asse
Project work
Condition for | essment | ard of credit | points | | | | | | | | | | | 5 | Form of asse
Project work Condition for Passed module | r the awa | ard of credit
ation and, if n | points
ecessary, cer | tificate of su | ccessful pa | rticipation (" | Testat") | | | | | | | 5 6 7 | Form of asset
Project work Condition for Passed module | r the awa
e examin | ard of credit
ation and, if no | points
ecessary, cer | tificate of su | ccessful pa | rticipation (" | Testat") | | | | | | | 5
6
7 | Form of asse
Project work Condition for Passed modula Application of Computer Science | r the aware examinate of the moence (B.S | ard of credit
ation and, if no | points
ecessary, cer | tificate of su | ccessful pa | rticipation (" | Testat") | | | | | | | 5
6
7
8 | Form of asset
Project work Condition for Passed module | r the awa
e examin
of the mo
ence (B.S
dinator | ard of credit
ation and, if no
odule (in the f | points
ecessary, cer | tificate of su | ccessful pa | rticipation (" | Testat") | | | | | | | - | ulsory Electiv | ve Modul | e from List | 2 "Application | ons of Comp | outer Scie | nce" | Abbr.
CV | | | |------|--|--|--|---|--|--|--|---|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | 6.32 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according
to
demand | Summer/
winter
according
to demand | 1 sem. | Compulsory
elective | B.Sc. | | | | 1 | Course | | Contact tim | e Self- | Forms of teaching | | Planned | Language | | | | | type | | | study | (learning n | nethods) | group size | | | | | | | | | _ | | | | | | | | | Lecture | | 2 SCH/30 h | 45 h | To be annou
course | nced in | 60 | German | | | | | Practical | | 4 SCH/60 h | 315h | | | 15 | German | | | | 2 | Learning out | comes/ | competence | s | | | | | | | | | practical examples using suitable software libraries such as OpenCV. In addition, they can evaluate their results qualitatively and quantitatively using appropriate metrics. As part of a project work, students learn to carry out practical projects in the field of computer vision independently in teams within a specified deadline. They are able to find solutions and present them in an appropriate and comprehensible form. Through team-oriented project work, students learn how to find solutions in groups and work on tasks in a cooperative manner. | | | | | | | | | | | 3 | Contents | | | | | | | | | | | | Computer visi interpretation technology, the objects. The apart of the colimage segmen Project process In consultation the course of implement a coresults as particular to the course of o | of individue localisate polication urse. Example that it is a contact of the cont | dual images a
ation and naven of current namples of possibject detections
be lecturer, the
ster. They re- | and image seq
igation of auto
nethods for se
sible content i
on, tracking.
e students sel-
search the sta | uences are upnomous vehilected topics nclude: came ect topics and the of the art | sed. Applic
nicles or the
as part of
era calibrat
d work on
in technologi | cations include reconstruct projects is a cion, feature these in groupgy and scien | le security
ion of
n essentia
extraction
ups over
nce, | | | | 4 | Participation | require | ments | | | | | | | | | | None | | | | | | | | | | | 5 | Form of asset Written examination of application or OSPE or (accompany) | ination or
or scientif
practical
ording to | ic poster or s
project, excu
Section 14 (4 | hort publication
Insion or daily | on manuscrip
protocol or p | ot or resear
portfolio or | ch funding
learning diar | ry or | | | | 6 | Condition for
Certificate of | | | t points
in ("Testat") a | nd passed m | odule exar | mination | | | | | 7 | Application of Computer Sci | | | following stud | dy programm | nes): | | | | | | 8 | Module coor | | | | | | | | | | | | Prof. DrIng. | Jan Rexi | lius | | | | | | | | | 9 | Other inform | | | | | | | | | | | | Literature wil | I be anno | unced in the | course. | | | | | | | | - | ulsory Electiv
Learning for | | | 2 "Applicatio | ons
of Comp | outer Scie | nce" | Abbr.
DLCV | | | | |------|--|---|---|--|---|---------------------------|---------------------------|---------------|--|--|--| | No. | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | | | 6.33 | 450 h | 15 | 5th/6th
sem. | Bi-annual
according
to
demand | Summer/
winter
according
to demand | | Compulsory
elective | B.Sc. | | | | | | Course | | Contact tim | | | Language | | | | | | | | type
Lecture | | 2 SCH/30 h | study
45 h | (learning n
To be annou
course | | group size
60 | German | | | | | | Practical | | 4 SCH/60 h | 315 h | | | 15 | German | | | | | | The students are familiar with typical applications for the use of deep artificial neural networks in the field of computer vision and understand their basic functioning. Students are able to implement selected procedures with suitable software libraries. Working in project teams, they are able to independently discuss issues related to deep learning in groups, develop solutions and implement them in practice. In addition, students learn to work on tasks in a cooperative manner and to carry them out within a specified period of time. | | | | | | | | | | | | | Contents The analysis and interpretation of images and videos using deep learning methods represents the current state of the art for many applications in the field of computer vision. This includes applications in the fields of autonomous driving, security technology or medicine. The lecture covers both basic and advanced deep learning methods and architectures. In terms of content, it focuses on applications in the field of computer vision. Examples of possible contents include: deep learning frameworks, convolutional neural networks (CNN), architectures for CNNs, object recognition and image segmentation with CNNs. Project process: In consultation with the lecturer, the students select topics and work on these in groups over the course of the semester. They research the state of the art in technology and science, implement a chosen solution approach as working software, evaluate and document their | | | | | | | | | | | | | Participation
None | require | ments | | | | | | | | | | 5 | Form of asse
Written exami
examination o
or practical, e
Section 14 (4)
Examinations | nation or
or scientifi
xcursion o
RPO) a o | c poster or sl
or daily proto
combination o | nort publication col or portfolion | n manuscrip
o or learning | t or resear
diary or O | ch funding a _l | oplication | | | | | 6 | Condition for
Certificate of | | | points
n ("Testat") a | nd passed m | odule exar | nination | | | | | | 7 | Application o Computer Sci | of the mo | odule (in the | | - | | | | | | | | | Module coord
Prof. DrIng. | Jan Rexi | lius | | | | | | | | | | 9 | Other inform
Literature wil | | | | | | | | | | | | Project | in Industry | | | | | | | | Abbr.
PRA | | |---------|--|---|--|--|--------------------------------|--|---------------------|---------------------|--------------|--| | No. | Workload | Credit points | Study
semester | F | requency | Sem. | Duration | Type | Q level | | | 7.0 | 450 h | 18 | 7th sem. | Α | nnual | Winter | | Compulsory elective | B.Sc. | | | 1 | Course | | Contact
hours | | Self- | Planned | Language | | | | | | type | | | | | (forms of
learning) | | group size | | | | | Work at an
individual
practice site | | 450 h | | - | Working activity | | 1 | German | | | | Learning outcomes / competences The internship offers students the opportunity to try out in practice the professional skills they have acquired in several semesters at the university and to acquire additional important competences in the extracurricular area. It therefore plays a central role within the framework of a practice-oriented and labour market-oriented education as well as for personality development. The learning outcomes include: • Orientation in the desired occupational field • Acquisition of practical knowledge and familiarisation with typical professional working methods • Getting to know technical and organisational contexts that are typical for the occupational field. • Participation in the work process according to the level of training • Practical training on clearly defined, concrete projects | | | | | | | | | | | | Carrying out Programmin Database de Realisation of Network plan Processing of Framework co Shorter daily The entire in Sick leave an The professi A report of 1 The internsh | requirengg
sign and of web appenning, seaf graphic nditions: working atternship and other ponal inter 3 to 20 pip is super | implementat plications curity analyse data, visualishours than hours than hours to comperiods of aborship must be ages is to be ervised by a unique to the comperiods of aborship must be ages is to be ervised by a unique to the comperiods of aborship must be ages is to be ervised by a unique to the comperiods of aborship must be ages is to be ervised by a unique to the comperiods of comperiod of the comperiod of the comperiods of the comperiod comperi | es,
ion
es
sat
nalf
ple
ser
ser
e pr | | permitted
nonths.
nt.
n internsk
professio | d.
nip instituti | | | | | | Participation
Formal: 110 (
Content: | | | | | | | | | | | | Form of asse
Evaluated prac
the training in | ctical repo | ort as a certif
(see BPO) | fica | te of successfu | ul particip | ation ("Tes | stat") and rep | oort from | | | | Condition for
Module exam | ination p | ass | | | | | | | | | 7 | Application
of
Computer Sc | | | fol | llowing study p | orogramm | es): | | | | | | Gips, Hoffma | the compi
nn, König | | | dy programme
Müller, Thiel) | e (Becking | , Behrens, | Brunsmann, | George, | | | 9 | Other inform
Working mat | | l literature co | orre | espond to the i | ndividual | assignmen | nt | | | | No. | | chelor Thesis | | | | | | | | |-----|--|---------------|-------------------|-------------------|---|------------------|---------------------|----------|--| | | Workload | Credit points | Study
semester | Frequency | Sem. | Duration | Туре | Q level | | | 7.1 | 360 h | 12 | 7th sem. | Annual | Winter | | Compulsory elective | B.Sc. | | | 1 | Course | | Contact
hours | Self- | Forms of | f teaching | Planned | Language | | | | type | | iloui s | study | (forms of
learning) | | group size | | | | | 0.3 SCH Individual
lecturer-based
faculty tutoring | | 10 h | 350 h | Individua
based fac
tutoring
Independ
preparation
bachelor | ent
on of the | 1 | German | | | 2 | Learning outcomes / competences | | | | | | | | | | | the professional skills of a computer scientist. The systematic processing and practice-related implementation of a task as well as the coherent presentation of reports and publications serves as communication between experts and ensures that acquired knowledge and skills are retained. Students learn how to methodically process a task and present it with a clearly structured result in a given time frame by quickly familiarising themselves with a new task an independently deepening their knowledge in a specific area. Students learn to use common tools and methods for work support, apply a range of subject-specific skills, abilities and techniques in order to solve tasks independently, to analyse and evaluate them and to present them in an overall context. | | | | | | | | | | 3 | Contents | | | | | | | | | | | The bachelor thesis is intended to prove that students are able to solve a complex problem using scientific methods within a limited period of time and to document the theoretical and practical knowledge acquired in a comprehensible manner. 1. Define the concrete details of a task 2. Preparation of a timetable 3. Evaluation and listing of the techniques and methods to be used 4. Creation of a software concept 5. Implementation and documentation of the software solution 6. Overall view, test and evaluation of the solution 7. Presentation of the solution in the form of the bachelor thesis | | | | | | | | | | | Participation requirements Formal: Passed module examinations according to the course schedule except for four module examinations (see also BPO). Content: Knowledge in the breadth of the subject studied | | | | | | | | | | 5 | Form of assessment Bachelor thesis assessed by two examiners | | | | | | | | | | | Condition for the award of credit points Module examination pass | | | | | | | | | | 7 | Application of the module (in the following study programmes): Computer Science (B.Sc.) | | | | | | | | | | 8 | Module coordinator | | | | | | | | | | | Lecturers in the computer science study programme (Becking, Behrens, Brunsmann, Georg Gips, Hoffmann, König, Kreienkamp, Müller, Thiel) | | | | | | | George, | | | | | nn, Köniç | | p, Müller, Thiel) | | | | | |